The metabolism of pyrimidines by proteolytic clostridia
- PMID: 235246
- DOI: 10.1007/BF00428359
The metabolism of pyrimidines by proteolytic clostridia
Abstract
Uracil was used by growing cultures of Clostridium sporogenes, and by proteolytic strains of C. botulinum types A and B. Uracil was not used by C. bifermentans; C. botulinum, type B (non-proteolytic); C. botulinum, type F (non-proteolytic); C. botulinum, type E; C. butyricum; C. cochlearium; C. difficile; C. histolyticum; C. oedematiens, type A; C. paraputrificum; C. scatologenes; C. specticum; C. sordellii; C. sticklandii; C. tertium; C. tetani; C. tetanomorphum; C. welchii, types A, B, C, E and 4 untyped strains. The growth of C. sporogenes was not increased by uracil; it was reduced to dihydrouracil. Experiments with washed cells of C. sporogenes showed that the uracil-reducing system was inducible. Washed cell suspensions incubated under hydrogen with uracil, thymine, iso-barbituric acid, 5-amino uracil and cytosine consumed 1 mole H2/mole pyrimidine. The reduction product of cytosine was dihydrouracil indicating that it was deaminated before reduction. The reduction products of the remaining pyrimidines were the corresponding dihydro derivatives. Extracts of C. sporogenes reduced uracil in the presence of NADPH2 but not NADH2.
Similar articles
-
Degradation of pyrimidine bases in Clostridium sticklandii.Arch Microbiol. 1980 Jan;124(1):111-4. doi: 10.1007/BF00407038. Arch Microbiol. 1980. PMID: 7377903
-
The end products of the metabolism of aromatic amino acids by Clostridia.Arch Microbiol. 1976 Apr 1;107(3):283-8. doi: 10.1007/BF00425340. Arch Microbiol. 1976. PMID: 1275638
-
[Morphological changes in human embryonic lung fibroblasts caused by cytotoxins of various Clostridium species].Zentralbl Bakteriol Mikrobiol Hyg A. 1988 Jan;267(3):367-78. Zentralbl Bakteriol Mikrobiol Hyg A. 1988. PMID: 3376617 German.
-
Clostridium sporogenes PA 3679 and its uses in the derivation of thermal processing schedules for low-acid shelf-stable foods and as a research model for proteolytic Clostridium botulinum.J Food Prot. 2012 Apr;75(4):779-92. doi: 10.4315/0362-028X.JFP-11-391. J Food Prot. 2012. PMID: 22488072 Review.
-
Photochemistry of nucleic acids and their constituents.Photophysiology. 1972;(7):207-74. Photophysiology. 1972. PMID: 4618356 Review. No abstract available.
Cited by
-
Degradation of pyrimidine bases in Clostridium sticklandii.Arch Microbiol. 1980 Jan;124(1):111-4. doi: 10.1007/BF00407038. Arch Microbiol. 1980. PMID: 7377903
-
Anaerobic degradation of uric acid via pyrimidine derivatives by selenium-starved cells of Clostridium purinolyticum.Arch Microbiol. 1982 May;131(3):255-60. doi: 10.1007/BF00405889. Arch Microbiol. 1982. PMID: 6808963
-
When anaerobes encounter oxygen: mechanisms of oxygen toxicity, tolerance and defence.Nat Rev Microbiol. 2021 Dec;19(12):774-785. doi: 10.1038/s41579-021-00583-y. Epub 2021 Jun 28. Nat Rev Microbiol. 2021. PMID: 34183820 Free PMC article. Review.
-
Energy conservation in chemotrophic anaerobic bacteria.Bacteriol Rev. 1977 Mar;41(1):100-80. doi: 10.1128/br.41.1.100-180.1977. Bacteriol Rev. 1977. PMID: 860983 Free PMC article. No abstract available.
-
Urea: obligate intermediate of pyrimidine-ring catabolism in Rhodosporidium toruloides.J Bacteriol. 1979 Mar;137(3):1145-50. doi: 10.1128/jb.137.3.1145-1150.1979. J Bacteriol. 1979. PMID: 571431 Free PMC article.