Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct;15(5):751-8.
doi: 10.1007/s10544-013-9760-1.

Development of fluorescent nanoparticle-labeled lateral flow assay for the detection of nucleic acids

Affiliations

Development of fluorescent nanoparticle-labeled lateral flow assay for the detection of nucleic acids

Yuhong Wang et al. Biomed Microdevices. 2013 Oct.

Abstract

The rapid, specific and sensitive detection of nucleic acids is of utmost importance for the identification of infectious agents, diagnosis and treatment of genetic diseases, and the detection of pathogens related to human health and safety. Here we report the development of a simple and sensitive nucleic acid sequence-based and Ru(bpy)3 (2+)-doped silica nanoparticle-labeled lateral flow assay which achieves low limit of detection by using fluorescencent nanoparticles. The detection of the synthetic nucleic acid sequences representative of Trypanosoma mRNA, the causative agent for African sleeping sickness, was utilized to demonstrate this assay. The 30 nm spherical Ru(bpy)3 (2+)-doped silica nanoparticles were prepared in aqueous medium by a novel method recently reported. The nanoparticles were modified by 3-glycidoxypropyl trimethoxysilane in order to conjugate to amine-capped oligonucleotide reporter probes. The fluorescent intensities of the fluorescent assays were quantified on a mictrotiter plate reader using a custom holder. The experimental results showed that the lateral flow fluorescent assay developed was more sensitive compared with the traditional colloidal gold test strips. The limit of detection for the fluorescent lateral flow assay developed is approximately 0.066 fmols as compared to approximately 15 fmols for the colloidal gold. The limit of detection can further be reduced about one order of magnitude when "dipstick" format was used.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources