Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;8(3):e58820.
doi: 10.1371/journal.pone.0058820. Epub 2013 Mar 19.

Analysis of flavonoids and the flavonoid structural genes in brown fiber of upland cotton

Affiliations

Analysis of flavonoids and the flavonoid structural genes in brown fiber of upland cotton

Hongjie Feng et al. PLoS One. 2013.

Abstract

Background: As a result of changing consumer preferences, cotton (Gossypium Hirsutum L.) from varieties with naturally colored fibers is becoming increasingly sought after in the textile industry. The molecular mechanisms leading to colored fiber development are still largely unknown, although it is expected that the color is derived from flavanoids.

Experimental design: Firstly, four key genes of the flavonoid biosynthetic pathway in cotton (GhC4H, GhCHS, GhF3'H, and GhF3'5'H) were cloned and studied their expression profiles during the development of brown- and white cotton fibers by QRT-PCR. And then, the concentrations of four components of the flavonoid biosynthetic pathway, naringenin, quercetin, kaempferol and myricetin in brown- and white fibers were analyzed at different developmental stages by HPLC.

Result: The predicted proteins of the four flavonoid structural genes corresponding to these genes exhibit strong sequence similarity to their counterparts in various plant species. Transcript levels for all four genes were considerably higher in developing brown fibers than in white fibers from a near isogenic line (NIL). The contents of four flavonoids (naringenin, quercetin, kaempferol and myricetin) were significantly higher in brown than in white fibers and corresponding to the biosynthetic gene expression levels.

Conclusions: Flavonoid structural gene expression and flavonoid metabolism are important in the development of pigmentation in brown cotton fibers.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Schematic representation of the flavonoid biosynthetic pathway modified from –.
C4H: Cinnamate-4-hydroxylase; 4CL: 4-Coumarate acyl-COA ligase; CHS: chalcone synthase; CHI: chalcone isomerase; F3′H: flavonoid-3′-hydroxylase; F3′5′H: flavonoid-3′5′-hydroxylase; FLS: flavonol synthase; DFR: dihydroflavonol reductase; ANS: Anthocyanidin synthase; 3GT: 3-O-glucosyltransferase.
Figure 2
Figure 2. Multiple alignment of deduced amino acid sequences of plant chalcone synthase.
Abbreviations of sequences RhCHS: Rosa hybrid cultivar 'Kardinal' (BAC66467); PcCHS: Pyrus communis (AAX16494); VvCHS:Vitis vinifera (BAB84111); AmCHS: Abelmoschus manihot(ACE60221); RsCHS: Rhododendron simsii (CAC88858).
Figure 3
Figure 3. Phylogenetic analyses of chalcone synthase and cytochrome P450 superfamily proteins from various species.
(A) Phylogenetic analyses of chalcone syntheses, (B) Phylogenetic analyses of cytochrome P450 superfamily proteins. VvCHS: Vitis vinifera (ABM67586), IpCHS: Ipomoeapurpurea (BAA20387), RhCHS: Rud-beckia hirta (ABN79673), ZmCHS: Zea mays (CAA42763), OsCHS: Oryza sativa (japonica cultivar-group) (BAA19186), AsCHS: Aquilaria sinensis (ABM73434), AtCHS; Arabidopsis thaliana (CAI30418), ThCHS: Torenia hybrid cultivar (BAB20074), AhCHS: Arachis hypogaea (AAO32821), AmCHS: Abelmoschus manihot (ACE60221); PhCHS: Petunia x hybrida (BAM17286); GhCHS: Gossypium hirsutum (ABS52573); PtC4H: Populus trichocarpa (ACC63873); HlC4H: Humulus lupulus (ACM69364); Ntc4h: Nicotiana tabacum (ABC69412); PhC4H: Petunia x hybrid (ADX33332); VvC4H: Vitis vinifera (XP_002266238); MdC4H: Malus x domestica (AAY87450); PaC3′H: Prunus avium (ADZ54783); VvC3′H: Vitis vinifera (XP_002284151); MdC3′H: Malus x domestica (ACR14867); ArC3′H: Arabidopsis lyrata subsp. Lyrata (XP_002871298); CsC3′H: Camellia sinensis (ACV74415); CiC3′H: Cichorium intybus (ACN65825); PtC3′5′H: Populus trichocarpa (XP_002314004); VvC3′5′H: Vitis vinifera (BAE47007); CsC3′5′H: Camellia sinensis (AAY23287); VwC3′5′H: Viola x wittrockiana (BAF93855); PiC3′5′H: Petunia integrifolia subsp. integrifolia (BAF34563); MtC3′5′H: Medicago truncatula (XP_003638760).
Figure 4
Figure 4. Multiple alignment of deduced amino acid sequences of Cinnamate-4-hydroxylase (C4H), flavanone-3-hydroxylase (F3′H), flavonoid-3'5'-hydroxylase (F3′5′H) from the brown cotton fiber.
Figure 5
Figure 5. QRT-PCR analysis of four flavonoid structural genes in the brown and white cotton.
A: GhC4H1, B: GhCHS, C: GhF3H, D: GhF35H. In the horizontal axis, 1: roots; 2: hypocotyls; 3: leaves; 4: flowers, 5–14 represent 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 DPA fiber cells, respectively.
Figure 6
Figure 6. The contents of four flavonoids during the development of brown and white cotton fiber.
A: naringenin, B: quercetin, C: myricetin, D: kaempferol. The numbers in horizontal axis represent 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 DPA fiber cells, respectively.

References

    1. Vreeland JJM (1999) The revival of colored cotton. Scientific American 280: 112–119.
    1. Qiu XM (2004) Research progress and prospects on naturally-colored cotton,Cotton Sciences. 16: 249–254.
    1. Zhao XQ, Wang XD (2005) Composition Analysis of Pigment in Colored Cotton Fiber. Acta Agronomica Sinice 4: 456–462.
    1. Kohel RJ (1985) Genetic analysis of fiber color variants in cotton. Crop Science 25: 793–797.
    1. Zhan SH, Li ZP, Lin Y, Cai YP (2008) Quantitative analysis on the inherited characteristics of naturally colored brown cotton fiber color. Chinese Agricultural Science Bulletin 24: 146–148.

Publication types

MeSH terms