Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar 26:4:63.
doi: 10.3389/fpls.2013.00063. eCollection 2013.

ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination

Affiliations

ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination

Erwann Arc et al. Front Plant Sci. .

Abstract

Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8'-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8'-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination.

Keywords: abscisic acid; dormancy; ethylene; germination; hormone; nitric oxide; seed.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
ABA metabolism pathway. Zeaxanthin conversion into violaxanthin is catalyzed by zeaxanthin epoxidase (ZEP). ABA4 is involved in the synthesis of neoxanthin, which is then cis-isomerized, together with violaxanthin, by an unknown isomerase. Carotenoid cleavage is catalyzed by a family of 9-cis-epoxycarotenoid dioxygenases (NCED) to form xanthoxin. Xanthoxin moves to the cytosol by an unknown mechanism and is converted into abscisic aldehyde by a short-chain dehydrogenase reductase (SDR1), which is then oxidized into ABA by an abscisic aldehyde oxidase (AAO3). Sulfuration of AAO3 molybdenum co-factor by ABA3 is necessary for enzyme activity. The 8′-hydroxylation by CYP707A enzymes is thought to be the predominant pathway for ABA catabolism. Hydroxy-groups of ABA and its catabolites, phaseic acid (PA), neoPA, and dihydrophaseic acid (DPA) are targets for conjugation. ABA-glucose ester is formed by ABA glucosyltransferases (UGT) and hydrolyzed by glucosidases, including BG1 and BG2.
FIGURE 2
FIGURE 2
Interactions between ethylene, abscisic acid, and nitric oxide signaling pathways in the regulation of seed germination and dormancy. This scheme is based on genetic analyses, microarray data, and physiological studies on seed responsiveness to ABA, ethylene, or NO. ABA binding to PYR/PYL/RCAR receptor induces the formation of a protein complex with PP2C and the inhibition of phosphatase activity. In the absence of ABA, PP2C dephosphorylate SnRK2. When ABA is present, PP2C binding to the receptor releases inhibition of SnRK2 activity, which can phosphorylate downstream targets, including ABI5-related transcription factors. Interactions between ABI3 and ABI5 mediate transcriptional regulation of ABA-responsive genes. Ethylene positively regulates its own biosynthesis, by acting on ACC synthesis catalyzed by ACS and subsequent conversion to ethylene by ACO. This last step is also subject to ABA inhibition. Ethylene is perceived by receptors (among which ETR1) located in the endoplasmic reticulum; its binding leads to the deactivation of the receptors that become enable to recruit CTR1. Release of CTR1 inhibition allows EIN2 to act as a positive regulator of ethylene signaling pathway. EIN2 acts upstream of nuclear transcription factors, such as EIN3, EILs, and ERBPs/ERFs. Ethylene down-regulates ABA accumulation by both inhibiting its synthesis and promoting its inactivation, and also negatively regulates ABA signaling. In germinating seeds, NO enhances ABA catabolism and may also negatively regulate ABA synthesis and perception. Moreover, NO promotes both ethylene synthesis and signaling pathway. ABA, abscisic acid; ABI3, ABA insensitive3; ABI5, ABA insensitive5; ACC, 1-aminocyclopropane 1-carboxylic acid; ACO, ACC oxidase; ACS, ACC synthase; CTR1, constitutive triple response 1; CYP707A, ABA-8′-hydroxylase; EIL, EIN3-like; EIN, ethylene-insensitive; EREBP, ethylene-responsive element binding protein; ERF, ethylene response factor; Et, ethylene; ETR1, ethylene receptor1; NCED, 9-cis-epoxycarotenoid dioxygenase; NO, nitric oxide; PP2C, clade A type 2C protein phosphatases; PYR/PYL/RCAR, pyrabactin resistance1/PYR1-like/regulatory components of ABA receptor; SnRK2, group III sucrose non-fermenting-1-related protein kinase 2; a dashed line is used when regulatory targets are not precisely identified.
FIGURE 3
FIGURE 3
Ethylene biosynthesis pathway. S-adenosyl-methionine (S-AdoMet) is synthesized from the methionine by the S-adenosyl-methionine synthetase (SAM synthetase) with one ATP molecule expensed per S-AdoMet synthesized. S-AdoMet is then converted to 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC synthase, 5′-methylthioadenosine (MTA) being a by-product. MTA is recycled to methionine by successive enzymatic reactions involving various intermediates (MTR, 5-methylthioribose; KMB, 2-keto-4-methylthiobutyrate), which constitute the methionine (Yang) cycle. S-AdoMet is also the precursor of the spermidine/spermine biosynthesis pathway. Ethylene production is catalyzed by the ACC oxidase using ACC as substrate, and generates carbon dioxide and hydrogen cyanide. Malonylation of ACC to malonyl-ACC (MACC) reduces ACC content and consequently ethylene production.
FIGURE 4
FIGURE 4
Simplified overview of NO biosynthesis and homeostasis in plant cells. This scheme is inspired from Moreau et al. (2010). Nitrate (NO3 ) assimilation produces nitrite (NO2 ) in a reaction catalyzed by nitrate reductase (NR). The subsequent reduction of nitrite into NO can occur enzymatically, either through NR activity or mitochondrial electron transport chains, and via non-enzymatic reactions (reductive pathways). Alternatively, NO synthesis can result from oxidative reactions from hydroxylamine, polyamines or L-arginine (L-Arg; oxidative pathways). NO synthesis from L-Arg could account for the nitric oxide synthase-like (NOS-like) activity detected in plants. The pool of NO is then influenced by non-symbiotic hemoglobin 1 (nsHb1) dioxygenase activity, which converts NO into NO3 . NO can also react with reduced glutathione or thiol groups leading to the reversible formation of S-nitrosothiols (e.g., GSNO, S-nitrosoglutathione; S-nitrosylated proteins). Red arrows highlight the so-called nitrate-NO cycle that may take place under hypoxia. Green arrows correspond to biosynthesis reactions while blue arrows indicate reactions involved in NO homeostasis.

References

    1. Abat J. K., Mattoo A. K., Deswal R. (2008). S-nitrosylated proteins of a medicinal CAM plant Kalanchoe pinnata – ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition. FEBS J. 275 2862–2872 - PubMed
    1. Abeles F. B. (1986). Role of ethylene in Lactuca sativa cv Grand Rapids seed germination. Plant Physiol. 81 780–787 - PMC - PubMed
    1. Alboresi A., Gestin C., Leydecker M. T., Bedu M., Meyer C., Truong H. N. (2005). Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ. 28 500–512 - PubMed
    1. Alderton W. K., Cooper C. E., Knowles R. G. (2001). Nitric oxide synthases: structure, function and inhibition. Biochem. J. 357 593–615 - PMC - PubMed
    1. Alonso J. M., Hirayama T., Roman G., Nourizadeh S., Ecker J. R. (1999). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284 2148–2152 - PubMed

LinkOut - more resources