Long-acting β2-agonists increase fluticasone propionate-induced mitogen-activated protein kinase phosphatase 1 (MKP-1) in airway smooth muscle cells
- PMID: 23533638
- PMCID: PMC3606114
- DOI: 10.1371/journal.pone.0059635
Long-acting β2-agonists increase fluticasone propionate-induced mitogen-activated protein kinase phosphatase 1 (MKP-1) in airway smooth muscle cells
Abstract
Mitogen-activated protein kinase phosphatase 1 (MKP-1) represses MAPK-driven signalling and plays an important anti-inflammatory role in asthma and airway remodelling. Although MKP-1 is corticosteroid-responsive and increased by cAMP-mediated signalling, the upregulation of this critical anti-inflammatory protein by long-acting β2-agonists and clinically-used corticosteroids has been incompletely examined to date. To address this, we investigated MKP-1 gene expression and protein upregulation induced by two long-acting β2-agonists (salmeterol and formoterol), alone or in combination with the corticosteroid fluticasone propionate (abbreviated as fluticasone) in primary human airway smooth muscle (ASM) cells in vitro. β2-agonists increased MKP-1 protein in a rapid but transient manner, while fluticasone induced sustained upregulation. Together, long-acting β2-agonists increased fluticasone-induced MKP-1 and modulated ASM synthetic function (measured by interleukin 6 (IL-6) and interleukin 8 (IL-8) secretion). As IL-6 expression (like MKP-1) is cAMP/adenylate cyclase-mediated, the long-acting β2-agonist formoterol increased IL-6 mRNA expression and secretion. Nevertheless, when added in combination with fluticasone, β2-agonists significantly repressed IL-6 secretion induced by tumour necrosis factor α (TNFα). Conversely, as IL-8 is not cAMP-responsive, β2-agonists significantly inhibited TNFα-induced IL-8 in combination with fluticasone, where fluticasone alone was without repressive effect. In summary, long-acting β2-agonists increase fluticasone-induced MKP-1 in ASM cells and repress synthetic function of this immunomodulatory airway cell type.
Conflict of interest statement
Figures






References
-
- Pauwels RA, Lofdahl CG, Postma DS, Tattersfield AE, O'Byrne P, et al. (1997) Effect of inhaled formoterol and budesonide on exacerbations of asthma. Formoterol and Corticosteroids Establishing Therapy (FACET) International Study Group. New England Journal of Medicine 337: 1405–1411. - PubMed
-
- O'Byrne PM, Naya IP, Kallen A, Postma DS, Barnes PJ (2008) Increasing doses of inhaled corticosteroids compared to adding long-acting inhaled beta2-agonists in achieving asthma control. Chest 134: 1192–1199. - PubMed
-
- Chung KF, Caramori G, Adcock IM (2009) Inhaled corticosteroids as combination therapy with beta-adrenergic agonists in airways disease: present and future. European Journal of Clinical Pharmacology 65: 853–871. - PubMed
-
- Sun H, Charles CH, Lau LF, Tonks NK (1993) MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 75: 487–493. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous