Some remarks on predicting multi-label attributes in molecular biosystems
- PMID: 23536215
- DOI: 10.1039/c3mb25555g
Some remarks on predicting multi-label attributes in molecular biosystems
Abstract
Many molecular biosystems and biomedical systems belong to the multi-label systems in which each of their constituent molecules possesses one or more than one function or feature, and hence needs one or more than one label to indicate its attribute(s). With the avalanche of biological sequences generated in the post genomic age, it is highly desirable to develop computational methods to timely and reliably identify their various kinds of attributes. Compared with the single-label systems, the multi-label systems are much more complicated and difficult to deal with. The current mini review focuses on the recent progresses in this area from both conceptual aspects and detailed mathematical formulations.
Similar articles
-
iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins.Mol Biosyst. 2013 Apr 5;9(4):634-44. doi: 10.1039/c3mb25466f. Epub 2013 Jan 31. Mol Biosyst. 2013. PMID: 23370050
-
iLoc-Plant: a multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites.Mol Biosyst. 2011 Dec;7(12):3287-97. doi: 10.1039/c1mb05232b. Epub 2011 Oct 10. Mol Biosyst. 2011. PMID: 21984117
-
Prediction of protein subcellular multisite localization using a new feature extraction method.Genet Mol Res. 2016 Sep 23;15(3). doi: 10.4238/gmr.15039013. Genet Mol Res. 2016. PMID: 27706790
-
Cellular automata and its applications in protein bioinformatics.Curr Protein Pept Sci. 2011 Sep;12(6):508-19. doi: 10.2174/138920311796957720. Curr Protein Pept Sci. 2011. PMID: 21787298 Review.
-
Proteomics--a new player in the post-genomic era.Indian J Biochem Biophys. 2002 Oct;39(5):291-302. Indian J Biochem Biophys. 2002. PMID: 22905374 Review.
Cited by
-
iMethylK_pseAAC: Improving Accuracy of Lysine Methylation Sites Identification by Incorporating Statistical Moments and Position Relative Features into General PseAAC via Chou's 5-steps Rule.Curr Genomics. 2019 May;20(4):275-292. doi: 10.2174/1389202920666190809095206. Curr Genomics. 2019. PMID: 32030087 Free PMC article.
-
iMethyl-PseAAC: identification of protein methylation sites via a pseudo amino acid composition approach.Biomed Res Int. 2014;2014:947416. doi: 10.1155/2014/947416. Epub 2014 May 22. Biomed Res Int. 2014. PMID: 24977164 Free PMC article.
-
iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals.Oncotarget. 2017 Apr 11;8(35):58494-58503. doi: 10.18632/oncotarget.17028. eCollection 2017 Aug 29. Oncotarget. 2017. PMID: 28938573 Free PMC article.
-
Prediction of Protein Submitochondrial Locations by Incorporating Dipeptide Composition into Chou's General Pseudo Amino Acid Composition.J Membr Biol. 2016 Jun;249(3):293-304. doi: 10.1007/s00232-015-9868-8. Epub 2016 Jan 8. J Membr Biol. 2016. PMID: 26746980
-
PseUI: Pseudouridine sites identification based on RNA sequence information.BMC Bioinformatics. 2018 Aug 29;19(1):306. doi: 10.1186/s12859-018-2321-0. BMC Bioinformatics. 2018. PMID: 30157750 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources