Amplifying genetic logic gates
- PMID: 23539178
- DOI: 10.1126/science.1232758
Amplifying genetic logic gates
Abstract
Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.
Comment in
-
Engineering. Recombinatorial logic.Science. 2013 May 3;340(6132):554-5. doi: 10.1126/science.1237738. Science. 2013. PMID: 23641100 No abstract available.
-
Complex logic in a single layer.Nat Methods. 2013 Jun;10(6):460-1. doi: 10.1038/nmeth.2501. Nat Methods. 2013. PMID: 23866330 No abstract available.
Similar articles
-
The effect of the DNA conformation on the rate of NtrC activated transcription of Escherichia coli RNA polymerase.sigma(54) holoenzyme.J Mol Biol. 2000 Jul 21;300(4):709-25. doi: 10.1006/jmbi.2000.3921. J Mol Biol. 2000. PMID: 10891265
-
Construction of Two-Input Logic Gates Using Transcriptional Interference.ACS Synth Biol. 2019 Oct 18;8(10):2428-2441. doi: 10.1021/acssynbio.9b00321. Epub 2019 Oct 1. ACS Synth Biol. 2019. PMID: 31532632
-
Implementing an OR-NOT (ORN) logic gate with components of the SOS regulatory network of Escherichia coli.Mol Biosyst. 2011 Aug;7(8):2389-96. doi: 10.1039/c1mb05094j. Epub 2011 May 17. Mol Biosyst. 2011. PMID: 21584342
-
Molecular anatomy of the transcription complex of Escherichia coli during initiation.Indian J Biochem Biophys. 1992 Apr;29(2):128-34. Indian J Biochem Biophys. 1992. PMID: 1398704 Review.
-
Modelling amorphous computations with transcription networks.J R Soc Interface. 2009 Aug 6;6 Suppl 4(Suppl 4):S523-33. doi: 10.1098/rsif.2009.0014.focus. Epub 2009 May 27. J R Soc Interface. 2009. PMID: 19474083 Free PMC article. Review.
Cited by
-
Artificial cell-cell communication as an emerging tool in synthetic biology applications.J Biol Eng. 2015 Aug 12;9:13. doi: 10.1186/s13036-015-0011-2. eCollection 2015. J Biol Eng. 2015. PMID: 26265937 Free PMC article.
-
Programmable protein circuits in living cells.Science. 2018 Sep 21;361(6408):1252-1258. doi: 10.1126/science.aat5062. Science. 2018. PMID: 30237357 Free PMC article.
-
Emerging applications for DNA writers and molecular recorders.Science. 2018 Aug 31;361(6405):870-875. doi: 10.1126/science.aat9249. Science. 2018. PMID: 30166483 Free PMC article. Review.
-
Dynamical Task Switching in Cellular Computers.Life (Basel). 2019 Jan 26;9(1):14. doi: 10.3390/life9010014. Life (Basel). 2019. PMID: 30691149 Free PMC article.
-
Binary recombinase systems for high-resolution conditional mutagenesis.Nucleic Acids Res. 2014 Apr;42(6):3894-907. doi: 10.1093/nar/gkt1361. Epub 2014 Jan 9. Nucleic Acids Res. 2014. PMID: 24413561 Free PMC article.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials