Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar 28:7:32.
doi: 10.3389/fncel.2013.00032. eCollection 2013.

Microglial control of neuronal activity

Affiliations

Microglial control of neuronal activity

Catherine Béchade et al. Front Cell Neurosci. .

Abstract

Fine-tuning of neuronal activity was thought to be a neuron-autonomous mechanism until the discovery that astrocytes are active players of synaptic transmission. The involvement of astrocytes has changed our understanding of the roles of non-neuronal cells and shed new light on the regulation of neuronal activity. Microglial cells are the macrophages of the brain and they have been mostly investigated as immune cells. However, recent data discussed in this review support the notion that, similarly to astrocytes, microglia are involved in the regulation of neuronal activity. For instance, in most, if not all, brain pathologies a strong temporal correlation has long been known to exist between the pathological activation of microglia and dysfunction of neuronal activity. Recent studies have convincingly shown that alteration of microglial function is responsible for pathological neuronal activity. This causal relationship has also been demonstrated in mice bearing loss-of-function mutations in genes specifically expressed by microglia. In addition to these long-term regulations of neuronal activity, recent data show that microglia can also rapidly regulate neuronal activity, thereby acting as partners of neurotransmission.

Keywords: glial cells; inflammation; microglia; neurotransmission; synapse.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Microglia are genuine partners of synaptic transmission. (A) In acute rodent brain slices, stimulation of microglia by LPS induces the rapid release of ATP, which recruits astrocytes. Upon purinergic stimulation, astrocytes release glutamate, inducing a mGluR-dependent release of presynaptic glutamate (Pascual et al., 2012). Stimulation of microglia by fractalkine induces the release of adenosine, which decreases neuronal activity (Meucci et al., ; Ragozzino et al., ; Piccinin et al., 2010). (B) In zebrafish larva, active neurons release the ATP that attracts microglial bulbous processes. These processes decrease neuronal activity by an as yet unknown mechanism (Li et al., 2012).

References

    1. Agulhon C., Fiacco T. A., McCarthy K. D. (2010). Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling. Science 327, 1250–1254 10.1126/science.1184821 - DOI - PubMed
    1. Aguzzi A., Barres B. A., Bennett M. L. (2013). Microglia: scapegoat, saboteur, or something else? Science 339, 156–161 10.1126/science.1227901 - DOI - PMC - PubMed
    1. Alfonso-Loeches S., Pascual-Lucas M., Blanco A. M., Sanchez-Vera I., Guerri C. (2010). Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J. Neurosci. 30, 8285–8295 10.1523/JNEUROSCI.0976-10.2010 - DOI - PMC - PubMed
    1. Antonucci F., Turola E., Riganti L., Caleo M., Gabrielli M., Perrotta C., et al. (2012). Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism. EMBO J. 31, 1231–1240 10.1038/emboj.2011.489 - DOI - PMC - PubMed
    1. Barres B. A. (2008). The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60, 430–440 10.1016/j.neuron.2008.10.013 - DOI - PubMed

LinkOut - more resources