Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook
- PMID: 23553650
- DOI: 10.1002/adma.201205178
Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook
Abstract
Strong chiroptical effects recently reported result from the interaction of light with chiral plasmonic nanostructures. Such nanostructures can be used to enhance the chiroptical response of chiral molecules and could also significantly increase the enantiomeric excess of direct asymmetric synthesis and catalysis. Moreover, in optical metamaterials, chirality leads to negative refractive index and all the promising applications thereof. In this Progress Report, we highlight four different strategies which have been used to achieve giant chiroptical effects in chiral nanostructures. These strategies consecutively highlight the importance of chirality in the nanostructures (for linear and nonlinear chiroptical effects), in the experimental setup and in the light itself. Because, in the future, manipulating chirality will play an important role, we present two examples of chiral switches. Whereas in the first one, switching the chirality of incoming light causes a reversal of the handedness in the nanostructures, in the second one, switching the handedness of the nanostructures causes a reversal in the chirality of outgoing light.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches.Annu Rev Phys Chem. 2019 Jun 14;70:275-299. doi: 10.1146/annurev-physchem-050317-021332. Epub 2019 May 21. Annu Rev Phys Chem. 2019. PMID: 31112458 Review.
-
Self-Assembly of Chiral Plasmonic Nanostructures.Adv Mater. 2016 Dec;28(47):10499-10507. doi: 10.1002/adma.201600697. Epub 2016 Jun 21. Adv Mater. 2016. PMID: 27327654
-
Recent developments in the chiroptical properties of chiral plasmonic gold nanostructures: bioanalytical applications.Mikrochim Acta. 2021 Nov 22;188(12):424. doi: 10.1007/s00604-021-05066-8. Mikrochim Acta. 2021. PMID: 34811580 Free PMC article. Review.
-
Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances.Chem Soc Rev. 2013 Aug 21;42(16):7028-41. doi: 10.1039/c3cs60139k. Chem Soc Rev. 2013. PMID: 23788027 Review.
-
Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules.Nat Commun. 2014 Jul 8;5:4302. doi: 10.1038/ncomms5302. Nat Commun. 2014. PMID: 25001884
Cited by
-
High-Performance Refractive Index and Temperature Sensing Based on Toroidal Dipole in All-Dielectric Metasurface.Sensors (Basel). 2024 Jun 18;24(12):3943. doi: 10.3390/s24123943. Sensors (Basel). 2024. PMID: 38931726 Free PMC article.
-
Convenient chirality transfer from organics to titania: construction and optical properties.RSC Adv. 2018 Apr 30;8(29):15951-15960. doi: 10.1039/c8ra02926a. eCollection 2018 Apr 27. RSC Adv. 2018. PMID: 35542199 Free PMC article.
-
Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials.Nat Commun. 2015 Sep 22;6:8379. doi: 10.1038/ncomms9379. Nat Commun. 2015. PMID: 26391292 Free PMC article.
-
Nonlinear Optical Activity of a Chiral Organic-Inorganic ([(NH3CH2CH2)3NH])2[MnBr5]Br5 Photoluminescent and Piezoelectric Crystal.J Phys Chem Lett. 2024 May 16;15(19):5276-5287. doi: 10.1021/acs.jpclett.4c00709. Epub 2024 May 9. J Phys Chem Lett. 2024. PMID: 38722175 Free PMC article.
-
Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas.Nat Nanotechnol. 2017 Feb;12(2):163-169. doi: 10.1038/nnano.2016.224. Epub 2016 Oct 24. Nat Nanotechnol. 2017. PMID: 27775725
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources