Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Sep;114(9):2101-13.
doi: 10.1002/jcb.24559.

Gremlin aggravates hyperglycemia-induced podocyte injury by a TGFβ/smad dependent signaling pathway

Affiliations

Gremlin aggravates hyperglycemia-induced podocyte injury by a TGFβ/smad dependent signaling pathway

Guiying Li et al. J Cell Biochem. 2013 Sep.

Abstract

Gremlin is a bone morphogenic protein (BMP) antagonist and is elevated in diabetic kidney tissues. In the early course of diabetic nephropathy (DN), podocyte are injured. We studied the protein and gene expression of gremlin in mice podocytes cultured in hyperglycemia ambient. The role of gremlin on podocyte injury and the likely signaling pathways involved were determined. Expression of gremlin was visualized by confocal microscopy. Recombinant mouse gremlin and small interfering RNA (siRNA) targeting to gremlin1 identified the role played by gremlin on podocytes. Study of canonical (smad2/3) and non-canonical (p38MAPK and JNK1/2) transforming growth factor beta (TGFβ)/smad mediated signaling revealed the putative signaling mechanisms involved. Smad2/3 siRNA and TGFβ receptor inhibition (SB431542) were used to probe canonical TGFβ/smad signaling in gremlin-induced podocyte injury. Apoptosis of podocytes was measured by TUNEL assay. Gremlin expression was enhanced in high glucose cultured mouse podocytes, and was localized predominantly in the cytoplasm and negligibly on the cell membrane. Not only expression of nephrin and synaptopodin were decreased on treatment with gremlin, but also synaptopodin rearrangement and nephrin relocalization were evident. Knockdown gremlin1 or smad2/3 by siRNA, and inhibition of TGFβR (SB431542) attenuated podocyte injury. Inhibition of canonical TGF-β signal blocked the injury of gremlin on podocytes. In conclusion, gremlin was clearly elevated in high glucose cultured mouse podocytes, and likely employed endogenous canonical TGFβ1/Smad signaling to induce podocyte injury. Knockdown gremlin1 by siRNA may be clinically useful in the attenuation of podocyte injury.

Keywords: GREMLIN1; INJURY, MOUSE PODOCYTE; SMAD; TRANSFORMING GROWTH FACTOR BETA1.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources