Biochemical aspects of cardiac muscle differentiation. Deoxyribonucleic acid synthesis and nuclear and cytoplasmic deoxyribonucleic acid polymerase activity
- PMID: 235544
Biochemical aspects of cardiac muscle differentiation. Deoxyribonucleic acid synthesis and nuclear and cytoplasmic deoxyribonucleic acid polymerase activity
Abstract
DNA synthesis and DNA polymerase activity have been measured in terminally differentiating cardiac muscle of the rat. Incorporation of [3H]thymidine into DNA essentially ceases by the 17th day of postnatal development. Cardiac muscle of neonatal rats contains at least two molecular species of DNA polymerase: a 3.5 S DNA polymerase that can be extracted from nuclei with 0.2 m potassium phosphate and a 6 to 8 S soluble cytoplasmic DNA polymerase. The nuclear DNA polymerase in crude extracts has a pH optimum of 9.0 and is more active with native DNA than with denatured DNA as the primer-template. The cytoplasmic DNA polymerase in crude extracts has a pH optimum of 7.5 and is more active with denatured DNA. The activity of the 6 to 8 S cytoplasmic DNA polymerase decreases 80-fold from day 1 to day 17 after birth, which correlates temporally with the reduced rate of DNA synthesis. The activity of the 3.5 S nuclear DNA polymerase remains relatively constant throughout postnatal development. Mixing experiments (assay of neonatal enzyme extracts with adult enzyme extracts) gave additive results, suggesting that the decline in 6 to 8 S DNA polymerase activity apparently is not due to the presence of absence of soluble activators or inhibitors at different times during development. These studies may provide a system which can be used to investigate the control of DNA synthesis and cellular proliferation during the terminal stages of cardiac muscle differentiation.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
