Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Mar;9(3):e1003402.
doi: 10.1371/journal.pgen.1003402. Epub 2013 Mar 28.

Long interspersed element-1 (LINE-1): passenger or driver in human neoplasms?

Affiliations
Review

Long interspersed element-1 (LINE-1): passenger or driver in human neoplasms?

Nemanja Rodić et al. PLoS Genet. 2013 Mar.

Abstract

LINE-1 (L1) retrotransposons make up a significant portion of human genomes, with an estimated 500,000 copies per genome. Like other retrotransposons, L1 retrotransposons propagate through RNA sequences that are reverse transcribed into DNA sequences, which are integrated into new genomic loci. L1 somatic insertions have the potential to disrupt the transcriptome by inserting into or nearby genes. By mutating genes and playing a role in epigenetic dysregulation, L1 transposons may contribute to tumorigenesis. Studies of the "mobilome" have lagged behind other tumor characterizations at the sequence, transcript, and epigenetic levels. Here, we consider evidence that L1 retrotransposons may sometimes drive human tumorigenesis.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Repetitive sequences in the human genome.
About half of our DNA bears homology to known classes of repeats (left chart). The largest class of repeats is the non-LTR retrotransposons, which consists mostly of LINE-1 (L1), L2, MIRs, and Alu elements (right chart). L2 and MIR sequences are not currently active, but subsets of L1 (17.88%), Alu (10.76%), and SVA sequences (not shown, 0.1%) are currently mobile in human genomes and are sources of genetic polymorphisms. Proportions were determined using a RepeatMasker (version rm-20110920, default settings, RepBase sequence database version 16.08) analysis of the Human February 2009 (GRCh37/hg19) assembly. LTR, long terminal repeat retrotransposons; L1, long interspersed element–1; L2, long interspersed element–2; MIR, mammalian wide interspersed repeat; Alu, a short interspersed element named for the AluI restriction enzyme; SVA, a composite retrotransposon consisting of short interspersed repeat (SINE-R), variable number tandem repeat (VNTR), and Alu like sequence segments.
Figure 2
Figure 2. DNA methylation and related mechanisms inhibit LINE-1 (L1) expression, and hypomethylation of DNA allows the L1 retrotransposon “life cycle” to proceed.
In normal somatic cells, DNA methylation and related mechanisms inhibit LINE-1 (L1) expression (left image). In neoplastic cells, hypomethylation of DNA allows the L1 retrotransposon “life cycle” to proceed (right image). Retrotransposition is shown in a simplified schematic under the red box as (from left to right) transcription, assembly of ORF1p and ORF2p with L1 RNA, and insertion of a new L1 sequence (L1′). Related tumor effects are conceptually shown as (i) somatic retrotransposition of L1 and nonautonomous repeat elements, such as Alu repeats; (ii) transcriptional changes induced by L1-encoded promoters (in antisense and sense) or impacts on area methylation; and (iii) L1 ORF2p-generated DNA breaks. ASP, L1 antisense promoter.

References

    1. Smit A, Hubley R, Green P (1996–2010) RepeatMasker Open. http://www.repeatmasker.org.
    1. de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7: e1002384 doi:10.1371/journal.pgen.1002384.. - DOI - PMC - PubMed
    1. Gemayel R, Vinces MD, Legendre M, Verstrepen KJ (2010) Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annual Review of Genetics 44: 445–477. - PubMed
    1. Singer MF (1982) SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell 28: 433–434. - PubMed
    1. Boissinot S, Davis J, Entezam A, Petrov D, Furano AV (2006) Fitness cost of LINE-1 (L1) activity in humans. Proc Natl Acad Sci U S A 103: 9590–9594. - PMC - PubMed

Publication types

MeSH terms