Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;8(3):e60454.
doi: 10.1371/journal.pone.0060454. Epub 2013 Mar 29.

Genetic variants from lipid-related pathways and risk for incident myocardial infarction

Affiliations

Genetic variants from lipid-related pathways and risk for incident myocardial infarction

Ci Song et al. PLoS One. 2013.

Abstract

Background: Circulating lipids levels, as well as several familial lipid metabolism disorders, are strongly associated with initiation and progression of atherosclerosis and incidence of myocardial infarction (MI).

Objectives: We hypothesized that genetic variants associated with circulating lipid levels would also be associated with MI incidence, and have tested this in three independent samples.

Setting and subjects: Using age- and sex-adjusted additive genetic models, we analyzed 554 single nucleotide polymorphisms (SNPs) in 41 candidate gene regions proposed to be involved in lipid-related pathways potentially predisposing to incidence of MI in 2,602 participants of the Swedish Twin Register (STR; 57% women). All associations with nominal P<0.01 were further investigated in the Uppsala Longitudinal Study of Adult Men (ULSAM; N = 1,142).

Results: In the present study, we report associations of lipid-related SNPs with incident MI in two community-based longitudinal studies with in silico replication in a meta-analysis of genome-wide association studies. Overall, there were 9 SNPs in STR with nominal P-value <0.01 that were successfully genotyped in ULSAM. rs4149313 located in ABCA1 was associated with MI incidence in both longitudinal study samples with nominal significance (hazard ratio, 1.36 and 1.40; P-value, 0.004 and 0.015 in STR and ULSAM, respectively). In silico replication supported the association of rs4149313 with coronary artery disease in an independent meta-analysis including 173,975 individuals of European descent from the CARDIoGRAMplusC4D consortium (odds ratio, 1.03; P-value, 0.048).

Conclusions: rs4149313 is one of the few amino acid changing variants in ABCA1 known to associate with reduced cholesterol efflux. Our results are suggestive of a weak association between this variant and the development of atherosclerosis and MI.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: Several authors of the original CARDIoGRAMplusC4D study that provided in silico data for one SNP of the present study are employees of deCODE genetics. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1
Figure 1. Kaplan-Meier survival function for rs4149313 and survival of MI in STR (A) and ULSAM (B).
Survival function of MI for individuals having no (A/A; blue line); one (A/G; red line) or two (G/G; green line) risk alleles at ABCA1 rs4149313 locus.
Figure 2
Figure 2. Forest plot for independent replication of association between rs4149313 and CAD in CARDIoGRAMplusC4D.
Fixed-effect meta-analysis was applied for effect of rs4149313 on CAD in CARDIoGRAMplusC4D consortium. The diamond in the bottom represents the confidence interval of this independent replication.
Figure 3
Figure 3. Region plot of the ABCA1 locus (chromosome 9 co-ordinates 106157871–107157392) in the Swedish Twin Registry.
The SNP rs4149313 with the strongest association is marked by a bright blue diamond. Each rhomb represents a SNP and the brightness represents the extent of linkage disequilibrium with the lead SNP. The recombination rates are marked with yellow lines. Relevant genes and genomic coordinates are shown below the plots. Plots were generated using SNAP (http://www.broadinstitute.org/mpg/snap/ldplot.php. Accessed 2013 Mar 1.) and based on HapMap CEU release 22, NCBI B36 assembly, dbSNP build 126.

References

    1. Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, et al. (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97: 1837–1847. - PubMed
    1. Daniels TF, Killinger KM, Michal JJ, Wright RW Jr, Jiang Z (2009) Lipoproteins, cholesterol homeostasis and cardiac health. Int J Biol Sci 5: 474–488. - PMC - PubMed
    1. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, et al. (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466: 707–713. - PMC - PubMed
    1. Austin MA, Hutter CM, Zimmern RL, Humphries SE (2004) Familial hypercholesterolemia and coronary heart disease: a HuGE association review. Am J Epidemiol 160: 421–429. - PubMed
    1. Lichtenstein P, De Faire U, Floderus B, Svartengren M, Svedberg P, et al. (2002) The Swedish Twin Registry: a unique resource for clinical, epidemiological and genetic studies. J Intern Med 252: 184–205. - PubMed

Publication types