Robust detection of dynamic community structure in networks
- PMID: 23556979
- PMCID: PMC3618100
- DOI: 10.1063/1.4790830
Robust detection of dynamic community structure in networks
Abstract
We describe techniques for the robust detection of community structure in some classes of time-dependent networks. Specifically, we consider the use of statistical null models for facilitating the principled identification of structural modules in semi-decomposable systems. Null models play an important role both in the optimization of quality functions such as modularity and in the subsequent assessment of the statistical validity of identified community structure. We examine the sensitivity of such methods to model parameters and show how comparisons to null models can help identify system scales. By considering a large number of optimizations, we quantify the variance of network diagnostics over optimizations ("optimization variance") and over randomizations of network structure ("randomization variance"). Because the modularity quality function typically has a large number of nearly degenerate local optima for networks constructed using real data, we develop a method to construct representative partitions that uses a null model to correct for statistical noise in sets of partitions. To illustrate our results, we employ ensembles of time-dependent networks extracted from both nonlinear oscillators and empirical neuroscience data.
Figures











Similar articles
-
Weight-conserving characterization of complex functional brain networks.Neuroimage. 2011 Jun 15;56(4):2068-79. doi: 10.1016/j.neuroimage.2011.03.069. Epub 2011 Apr 1. Neuroimage. 2011. PMID: 21459148
-
Modular structure of functional networks in olfactory memory.Neuroimage. 2014 Jul 15;95:264-75. doi: 10.1016/j.neuroimage.2014.03.041. Epub 2014 Mar 22. Neuroimage. 2014. PMID: 24662576
-
Chimeras in random non-complete networks of phase oscillators.Chaos. 2012 Mar;22(1):013132. doi: 10.1063/1.3694118. Chaos. 2012. PMID: 22463008
-
Propagation delays determine neuronal activity and synaptic connectivity patterns emerging in plastic neuronal networks.Chaos. 2018 Oct;28(10):106308. doi: 10.1063/1.5037309. Chaos. 2018. PMID: 30384625 Review.
-
Information processing in neural networks by means of controlled dynamic regimes.Acta Biotheor. 1995 Jun;43(1-2):155-67. doi: 10.1007/BF00709440. Acta Biotheor. 1995. PMID: 7709684 Review.
Cited by
-
Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy.Nat Commun. 2020 Jul 8;11(1):3406. doi: 10.1038/s41467-020-17186-5. Nat Commun. 2020. PMID: 32641768 Free PMC article.
-
Gene communities in co-expression networks across different tissues.PLoS Comput Biol. 2023 Nov 17;19(11):e1011616. doi: 10.1371/journal.pcbi.1011616. eCollection 2023 Nov. PLoS Comput Biol. 2023. PMID: 37976327 Free PMC article.
-
Multilayer network switching rate predicts brain performance.Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):13376-13381. doi: 10.1073/pnas.1814785115. Epub 2018 Dec 13. Proc Natl Acad Sci U S A. 2018. PMID: 30545918 Free PMC article.
-
Evaluation of confound regression strategies for the mitigation of micromovement artifact in studies of dynamic resting-state functional connectivity and multilayer network modularity.Netw Neurosci. 2019 Feb 1;3(2):427-454. doi: 10.1162/netn_a_00071. eCollection 2019. Netw Neurosci. 2019. PMID: 30793090 Free PMC article.
-
Both activated and less-activated regions identified by functional MRI reconfigure to support task executions.Brain Behav. 2017 Dec 20;8(1):e00893. doi: 10.1002/brb3.893. eCollection 2018 Jan. Brain Behav. 2017. PMID: 29568689 Free PMC article.
References
-
- Newman M. E. J., Networks: An Introduction (Oxford University Press, 2010).
-
- Holme P. and Saramäki J., Phys. Rep. 519, 97 (2012).10.1016/j.physrep.2012.03.001 - DOI
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources