Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 15;163(2-3):64-70.
doi: 10.1016/j.ijfoodmicro.2013.02.014. Epub 2013 Mar 1.

Porosity of Lactococcus lactis subsp. lactis LD61 colonies immobilised in model cheese

Affiliations

Porosity of Lactococcus lactis subsp. lactis LD61 colonies immobilised in model cheese

J Floury et al. Int J Food Microbiol. .

Abstract

During cheese ripening, micro-organisms grow as immobilised colonies, metabolising substrates present in the matrix which generate products triggered by enzymatic reactions. Local limitation rates of diffusion, either in the matrix or within the bacterial colonies, can be responsible for modulation in the metabolic and enzymatic activities of micro-organisms during ripening. How bacterial colonies immobilised in cheese are porous to these diffusing solutes has never been explored. The objective of this study was to determine if fluorescent dextrans of different sizes (4.4, 70 and 155 kDa) are able to penetrate through colonies of Lactococcus lactis LD61 immobilised in solid media, either agar or model cheese. Confocal microscopic observations showed that lactococcus colonies immobilised in these two media were porous to dextrans from 4 kDa to 155 kDa. However, the rate of diffusion of the solutes was faster inside the colonies immobilised in ultrafiltered-cheese than in agar when large dextrans were considered (≥70 kDa). The colonial shape of the lactococcus strain was also shown to be lenticular in agar and spherical in the model cheese, indicating that the physical pressure exerted on the colony by the surrounding casein network was probably isotropous in the UF-cheese but not in agar. In both cases, the fact that lactococcus colonies immobilised in solid media are porous to large dextran solutes suggests that substrates or enzymes are likely also to be able to migrate inside the colonies during cheese ripening.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources