Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Jul;25(7):1598-607.
doi: 10.1016/j.cellsig.2013.03.017. Epub 2013 Apr 3.

The rationale of targeting mammalian target of rapamycin for ischemic stroke

Affiliations
Review

The rationale of targeting mammalian target of rapamycin for ischemic stroke

Zhao Zhong Chong et al. Cell Signal. 2013 Jul.

Abstract

Given the current limitation of therapeutic approach for ischemic stroke, a leading cause of disability and mortality in the developed countries, to develop new therapeutic strategies for this devastating disease is urgently necessary. As a serine/threonine kinase, mammalian target of rapamycin (mTOR) activation can mediate broad biological activities that include protein synthesis, cytoskeleton organization, and cell survival. mTOR functions through mTORC1 and mTORC2 complexes and their multiple downstream substrates, such as eukaryotic initiation factor 4E-binding protein 1, p70 ribosomal S6 kinase, sterol regulatory element-binding protein 1, hypoxia inducible factor-1, and signal transducer and activator transcription 3, Yin Ying 1, Akt, protein kinase c-alpha, Rho GTPase, serum-and gucocorticoid-induced protein kinase 1, etc. Specially, the role of mTOR in the central nervous system has been attracting considerable attention. Based on the ability of mTOR to prevent neuronal apoptosis, inhibit autophagic cell death, promote neurogenesis, and improve angiogenesis, mTOR may acquire the capability of limiting the ischemic neuronal death and promoting the neurological recovery. Consequently, to regulate the activity of mTOR holds a potential as a novel therapeutic strategy for ischemic stroke.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources