Ultrafast synaptic events in a chalcogenide memristor
- PMID: 23563810
- PMCID: PMC3619133
- DOI: 10.1038/srep01619
Ultrafast synaptic events in a chalcogenide memristor
Abstract
Compact and power-efficient plastic electronic synapses are of fundamental importance to overcoming the bottlenecks of developing a neuromorphic chip. Memristor is a strong contender among the various electronic synapses in existence today. However, the speeds of synaptic events are relatively slow in most attempts at emulating synapses due to the material-related mechanism. Here we revealed the intrinsic memristance of stoichiometric crystalline Ge2Sb2Te5 that originates from the charge trapping and releasing by the defects. The device resistance states, representing synaptic weights, were precisely modulated by 30 ns potentiating/depressing electrical pulses. We demonstrated four spike-timing-dependent plasticity (STDP) forms by applying programmed pre- and postsynaptic spiking pulse pairs in different time windows ranging from 50 ms down to 500 ns, the latter of which is 10(5) times faster than the speed of STDP in human brain. This study provides new opportunities for building ultrafast neuromorphic computing systems and surpassing Von Neumann architecture.
Figures




Similar articles
-
Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems.Sci Rep. 2014 May 9;4:4906. doi: 10.1038/srep04906. Sci Rep. 2014. PMID: 24809396 Free PMC article.
-
Mimicking Biological Synaptic Functionality with an Indium Phosphide Synaptic Device on Silicon for Scalable Neuromorphic Computing.ACS Nano. 2018 Feb 27;12(2):1656-1663. doi: 10.1021/acsnano.7b08272. Epub 2018 Jan 17. ACS Nano. 2018. PMID: 29328623
-
Multiprotocol-induced plasticity in artificial synapses.Nanoscale. 2014 Dec 21;6(24):15151-60. doi: 10.1039/c4nr03405h. Epub 2014 Nov 6. Nanoscale. 2014. PMID: 25373422
-
Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.Acc Chem Res. 2019 Apr 16;52(4):964-974. doi: 10.1021/acs.accounts.8b00553. Epub 2019 Mar 21. Acc Chem Res. 2019. PMID: 30896916 Review.
-
Evolution of Bio-Inspired Artificial Synapses: Materials, Structures, and Mechanisms.Small. 2021 Mar;17(9):e2000041. doi: 10.1002/smll.202000041. Epub 2020 May 26. Small. 2021. PMID: 32452636 Review.
Cited by
-
Understanding memristive switching via in situ characterization and device modeling.Nat Commun. 2019 Aug 1;10(1):3453. doi: 10.1038/s41467-019-11411-6. Nat Commun. 2019. PMID: 31371705 Free PMC article.
-
Enhanced reliability of phase-change memory via modulation of local structure and chemical bonding by incorporating carbon in Ge2Sb2Te5.RSC Adv. 2021 Jun 25;11(36):22479-22488. doi: 10.1039/d1ra02210e. eCollection 2021 Jun 21. RSC Adv. 2021. PMID: 35480803 Free PMC article.
-
Long-Term Homeostatic Properties Complementary to Hebbian Rules in CuPc-Based Multifunctional Memristor.Sci Rep. 2016 Oct 20;6:35273. doi: 10.1038/srep35273. Sci Rep. 2016. PMID: 27762316 Free PMC article.
-
A memristor SPICE model accounting for synaptic activity dependence.PLoS One. 2015 Mar 18;10(3):e0120506. doi: 10.1371/journal.pone.0120506. eCollection 2015. PLoS One. 2015. PMID: 25785597 Free PMC article.
-
Artificial Shape Perception Retina Network Based on Tunable Memristive Neurons.Sci Rep. 2018 Sep 13;8(1):13727. doi: 10.1038/s41598-018-31958-6. Sci Rep. 2018. PMID: 30213964 Free PMC article.
References
-
- Strukov D. B. Smart connections. Nature 476, 403–405 (2011). - PubMed
-
- Snider G. S. Spike-timing-dependent learning in memristive nanodevices. IEEE/ACM Int. Symp. on Nanoscale Architectures, 85–92 (2008).
-
- Linares-Barranco B. & Serrano-Gotarredona T. Memristance can explain spike-time-dependent-plasticity in neural synapses. Nature Precedings (2009).
-
- Jo S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous