Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2013 May 7;127(18):1850-2.
doi: 10.1161/CIRCULATIONAHA.113.002564. Epub 2013 Apr 5.

Knock, knock: who's there?: Nox1

Editorial

Knock, knock: who's there?: Nox1

Hana A Itani et al. Circulation. .

Abstract

It has become apparent that major sources of reactive oxygen species (ROS) in mammalian cells are the NADPH oxidases. These multimeric enzymes are composed of membrane bound catalytic subunits, or Nox enzymes and a small docking subunit termed p22phox. Depending on the Nox isoform, cytosolic regulatory subunits also play a role in their activation. There are 7 Nox isoforms. The first identified was Nox2, also termed gp91phox, which is present in phagocytic cells and is responsible for the oxidative burst. Unlike Nox2, the other Nox enzymes exhibit sustained production of ROS at somewhat lower levels. Their modes of activation differ, as do their cellular distribution. Nox 1-4 are expressed in vascular cells in rodents. Nox 5 has been identified in atherosclerotic lesions of humans but is not expressed in rodents. Stimulation of cells with angiotensin II, cytokines, catecholamines, high glucose, or mechanical stretch promote NADPH oxidase activation, in large part due to recruitment of cytosolic subunits to the membrane subunit, leading to formation of the functional enzyme complex that can transfer electrons molecular oxygen and formation of superoxide (O2 ·–). Superoxide serves as a progenitor for other ROS, including hydrogen peroxide (H2O2), peroxynitrite (OONO-), and hypochlorous acid (HOCl-). Enhanced activity the NADPH oxidases and increased expression of its subunits occur in many pathological conditions including hypertension, diabetes, atherosclerosis, cardiac hypertrophy and heart failure. Studies of genetically altered mice have shown that deletion of various NADPH oxidase subunits protect against these diseases, while their overexpression promotes pathology.-

Keywords: Editorials; NADPH oxidase; arteriosclerosis; diabetes mellitus; oxidants.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: None.

Figures

Figure 1
Figure 1
The role of Nox1 in diabetes associated atherosclerosis. High glucose activates Nox1, which in turn produces reactive oxygen species (ROS). These promote expression of pro-inflammatory and pro-fibrotic genes that lead to vascular inflammation and atherosclerotic lesion development. The Nox1 inhibitor GKT137831 prevents ROS production in response to high glucose and decreases vascular inflammation, fibrosis and plaque formation.

Comment on

  • NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis.
    Gray SP, Di Marco E, Okabe J, Szyndralewiez C, Heitz F, Montezano AC, de Haan JB, Koulis C, El-Osta A, Andrews KL, Chin-Dusting JP, Touyz RM, Wingler K, Cooper ME, Schmidt HH, Jandeleit-Dahm KA. Gray SP, et al. Circulation. 2013 May 7;127(18):1888-902. doi: 10.1161/CIRCULATIONAHA.112.132159. Epub 2013 Apr 5. Circulation. 2013. PMID: 23564668

References

    1. Lassegue B, San Martin A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 2012;110:1364–1390. - PMC - PubMed
    1. Dikalova AE, Gongora MC, Harrison DG, Lambeth JD, Dikalov S, Griendling KK. Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. Am J Physiol Heart Circ Physiol. 2010;299:H673–679. - PMC - PubMed
    1. Matsuno K, Yamada H, Iwata K, Jin D, Katsuyama M, Matsuki M, Takai S, Yamanishi K, Miyazaki M, Matsubara H, Yabe-Nishimura C. Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation. 2005;112:2677–2685. - PubMed
    1. Weber DS, Rocic P, Mellis AM, Laude K, Lyle AN, Harrison DG, Griendling KK. Angiotensin II-induced hypertrophy is potentiated in mice overexpressing p22phox in vascular smooth muscle. Am J Physiol Heart Circ Physiol. 2005;288:37–42. - PubMed
    1. Cai H, Griendling KK, Harrison DG. The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci. 2003;24:471–478. - PubMed