Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Apr 8:6:15.
doi: 10.1186/1756-6606-6-15.

Fragile X mental retardation protein and synaptic plasticity

Affiliations
Review

Fragile X mental retardation protein and synaptic plasticity

Michael S Sidorov et al. Mol Brain. .

Abstract

Loss of the translational repressor FMRP causes Fragile X syndrome. In healthy neurons, FMRP modulates the local translation of numerous synaptic proteins. Synthesis of these proteins is required for the maintenance and regulation of long-lasting changes in synaptic strength. In this role as a translational inhibitor, FMRP exerts profound effects on synaptic plasticity.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The role of FMRP in translation-dependent synaptic plasticity. (A) FMRP and mGluR5 impose opposite regulation on the local mRNA translation required for mGluR-LTD expression. In the absence of FMRP, there is excessive protein synthesis and exaggerated LTD. (B) While FMRP is known to regulate the translation required for LTD, evidence suggests it is not involved in the expression of L-LTP. There may be different pools of mRNA available at the synapse that are differentially required for LTD versus LTP, and FMRP may specifically regulate the pool required for LTD. (C) FMRP is explicitly involved in the regulation of dendritically localized translation and may not regulate somatic translation. Consequently, FMRP may only impact forms of plasticity that require local translation, such as mGluR-LTD. (D) In addition to mGluR-LTD, FMRP regulates the protein synthesis involved in mGluR-dependent facilitation of LTP. This finding suggests that the proteins whose translation is controlled by FMRP may be involved in bi-directional maintenance of plasticity rather than being specific to LTD.
Figure 2
Figure 2
FMRP and Kv4.2 regulate the threshold for inducing synaptic potentiation. (A) FMRP sets the threshold for LTP and STD-LTP. Fmr1 KO mice have deficient hippocampal LTP and cortical STD-LTP only with a “weak” induction protocol. (B) Kv4.2 is a dendritic A-type K+ channel that attenuates action potential backpropagation (bAP) and dendritic excitability. (C) Inhibition of Kv4.2 restores LTP following a weak induction protocol in Fmr1 KO mice.

Similar articles

Cited by

References

    1. Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses. Science. 2001;294:1030–1038. doi: 10.1126/science.1067020. - DOI - PubMed
    1. Steward O, Levy WB. Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J Neurosci. 1982;2:284–291. - PMC - PubMed
    1. Kang H, Schuman EM. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science. 1996;273:1402–1406. doi: 10.1126/science.273.5280.1402. - DOI - PubMed
    1. Huber KM, Kayser MS, Bear MF. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science. 2000;288:1254–1257. doi: 10.1126/science.288.5469.1254. - DOI - PubMed
    1. Huang YY, Kandel ER. Theta frequency stimulation induces a local form of late phase LTP in the CA1 region of the hippocampus. Learn Mem. 2005;12:587–593. doi: 10.1101/lm.98905. - DOI - PMC - PubMed

Substances