Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Sep 7;42(17):7204-13.
doi: 10.1039/c3cs60035a. Epub 2013 Apr 9.

To aggregate, or not to aggregate? considerations in the design and application of polymeric thermally-responsive nanoparticles

Affiliations
Review

To aggregate, or not to aggregate? considerations in the design and application of polymeric thermally-responsive nanoparticles

Matthew I Gibson et al. Chem Soc Rev. .

Abstract

The aim of this review is to highlight some of the challenges in designing thermally responsive nanoparticles, where the responsivity is endowed by a responsive polymeric corona. A review of the literature reveals many contradictory observations upon heating these particles through their transition temperature. Indeed, both an increase in size due to aggregation and particle shrinkage have been reported for apparently similar materials. Furthermore, careful review of the literature shows that responsive nanoparticles do not have the same transition temperature or properties as their constituent polymers. These observations raise serious questions as to how to achieve the rational design of a responsive particle with a predictable and reproducible response. Here we highlight specific cases where conflicting results have been observed for spherical particles and put these results into the context of flat-surface grafted polymer brushes to explain the behaviour in terms of grafting density, curvature, chain end effects and the role of the underlying substrate. A better understanding of these observations should lead to the improved design of nanoparticles with real function and applications.

PubMed Disclaimer

Publication types