Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr 10;309(14):1473-82.
doi: 10.1001/jama.2013.3219.

Long QT syndrome-associated mutations in intrauterine fetal death

Affiliations

Long QT syndrome-associated mutations in intrauterine fetal death

Lia Crotti et al. JAMA. .

Abstract

Importance: Intrauterine fetal death or stillbirth occurs in approximately 1 out of every 160 pregnancies and accounts for 50% of all perinatal deaths. Postmortem evaluation fails to elucidate an underlying cause in many cases. Long QT syndrome (LQTS) may contribute to this problem.

Objective: To determine the spectrum and prevalence of mutations in the 3 most common LQTS susceptible genes (KCNQ1, KCNH2, and SCN5A) for a cohort of unexplained cases.

Design, setting, and patients: In this case series, retrospective postmortem genetic testing was conducted on a convenience sample of 91 unexplained intrauterine fetal deaths (mean [SD] estimated gestational age at fetal death, 26.3 [8.7] weeks) that were collected from 2006-2012 by the Mayo Clinic, Rochester, Minnesota, or the Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. More than 1300 ostensibly healthy individuals served as controls. In addition, publicly available exome databases were assessed for the general population frequency of identified genetic variants.

Main outcomes and measures: Comprehensive mutational analyses of KCNQ1 (KV7.1, LQTS type 1), KCNH2 (HERG/KV11.1, LQTS type 2), and SCN5A (NaV1.5, LQTS type 3) were performed using denaturing high-performance liquid chromatography and direct DNA sequencing on genomic DNA extracted from decedent tissue. Functional analyses of novel mutations were performed using heterologous expression and patch-clamp recording.

Results: The 3 putative LQTS susceptibility missense mutations (KCNQ1, p.A283T; KCNQ1, p.R397W; and KCNH2 [1b], p.R25W), with a heterozygous frequency of less than 0.05% in more than 10 000 publicly available exomes and absent in more than 1000 ethnically similar control patients, were discovered in 3 intrauterine fetal deaths (3.3% [95% CI, 0.68%-9.3%]). Both KV7.1-A283T (16-week male) and KV7.1-R397W (16-week female) mutations were associated with marked KV7.1 loss-of-function consistent with in utero LQTS type 1, whereas the HERG1b-R25W mutation (33.2-week male) exhibited a loss of function consistent with in utero LQTS type 2. In addition, 5 intrauterine fetal deaths hosted SCN5A rare nonsynonymous genetic variants (p.T220I, p.R1193Q, involving 2 cases, and p.P2006A, involving 2 cases) that conferred in vitro electrophysiological characteristics consistent with potentially proarrhythmic phenotypes.

Conclusions and relevance: In this molecular genetic evaluation of 91 cases of intrauterine fetal death, missense mutations associated with LQTS susceptibility were discovered in 3 cases (3.3%) and overall, genetic variants leading to dysfunctional LQTS-associated ion channels in vitro were discovered in 8 cases (8.8%). These preliminary findings may provide insights into mechanisms of some cases of stillbirth.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Dr Crotti reported receiving an institutional grant from the Italian Ministry of Health. Mr Tester reported receiving royalties personally and to his institution from Transgenomic. Mr Bartos reported receiving a predoctoral grant from the American Heart Association. Dr Insolia reported receiving a grant to his institution from the Italian Ministry of Health, Ms Kunic reported receiving grant to her institution from the National Institutes of Health (NIH). Dr Ghidoni reported receiving a grant to her institution from the Italian Ministry of Health. Dr Cetin reported receiving a grant to her institution from the Italian Ministero dell'Istruzione, dell'Università e della Ricerca and has grants to her institution pending from the European Community, Italian Ministry of Health, and Italian Ministero dell'Istruzione, dell'Università e della Ricerca. Dr Van Dyke reported that he has grants to his institution pending from the National Institutes of Health and receives institutional support from the College of American Pathologists for which he serves as a consultant to the College of American Pathologists Cytogenices Resource Center. Dr Wick reported a pending grant to his institution from the T. Denny Sanford Endowed Collaborative Research Fund. Dr Delisle reported a grant to his insitution from the National Heart, Lung, and Blood Institute. Dr Facchinetti reported receiving consultancy fees from Institut Biochimique SA (IBSA) and lecture fees from Ferring SA, both in Switzerland, and travel expenses from Lo.Li. Pharma, Italy. Dr George reported receiving a grant to his institution from the NIH, has pending grants to his institution from Allergan Inc and Gilead Sciences, and receives royalties from Gilead Sciences Inc and Merck Inc. Dr Ackerman reported receiving royalties personally and to his institution from Transgenomic and received a grant from the NIH. Intellectual property derived from Dr Ackerman's research program resulted in license agreements in 2004 between Mayo Clinic Health Solutions (formerly Mayo Medical Ventures) and PGxHealth (formerly Genaissance Pharmaceuticals and now recently acquired by Transgenomic). However, Transgenomic did not contribute directly to this study in any manner. No other financial disclosures were reported.

Figures

Figure 1
Figure 1. KCNH2 Isoforms and Molecular Position of the HERG1b R25W Mutation
HERG1a and HERG1b are 2 isoforms encoded by KCNH2 alternatively spliced transcripts (KCNH2[1a] and KCNH2[1b]). The shaded regions of the exons represent the amino acid coding region of the gene that is initiated by the ATG start codon. Full-length KCNH2 contains 15 exons. The alternatively spliced gene transcript KCNH2 has an alternate exon 1 (labeled 1b). KCNH2(1b) does not include the first 5 exons of the full-length transcript but includes identical exons 6 through 15 that are present in the full-length transcript (KCNH2). The 2 isoforms differ only by their N-termini; HERG1b has a 56 amino acid residue N-terminus in which the first 36 residues have a unique sequence (single letter amino acid abbreviations), whereas HERG1a has a longer (396 residue) N-terminus, with the rest of the protein identical in both splice isoforms. The DNA sequence chromatogram illustrates the heterozygous c.73 C>T nucleotide substitution that results in the substitution of an arginine (R) for a tryptophan (W) at amino acid residue 25 encoded by alternate exon 1b. CNBD indicates cyclic nucleotide-binding domain; PAC, PAS-associated C-terminal; and PAS, Per-ARNT-Sim.
Figure 2
Figure 2. KCNQ1 Genetic Variants and Molecular Position of the KV7.1 Mutations A283T and R397W
Depicted are the novel p.A283T mutation, located between the S5 transmembrane spanning domain and the pore region (between S5 and S6 of the channel), and the mutation p.R397W, located in the C-terminal region following S6 of the protein. The DNA sequence chromatograms indicate the nucleotide changes corresponding to each mutation (c.847 G>A, p.A283T; c.1189 C>T, p.R397W). In the case of c.847 G>A, both black (G) and green (A) peaks are present at the same position indicating heterozygosity at nucleotide position 847, which predicts substitution of alanine (A) for threonine (T) at amino acid position 283 in the KV7.1 protein. The c.1189 C>T mutation (superimposed blue and red peaks) predicts substitution of arginine (R) for tryptophan (W) at amino acid position 397 in KV7.1
Figure 3
Figure 3. KV7.1-A283T and KV7.1-R397W Mutations Decrease Current at Positive Membrane Potentials
A, Whole-cell recordings from HEK293 cells transfected with KV7.1-wild-type, KV7.1-A283T, or KV7.1-R397W are illustrated. Macroscopic currents (IKs) were recorded at room temperature using the following voltage-clamp protocol: 5-second depolarizations from −80-mV to 70-mV in 10-mV increments (to elicit step currents) followed by a 5-second repolarization to −50 mV (to elicit tail currents). Peak step and tail IKs were measured at the points indicated by the arrows. Horizontal time scale and vertical current scale in picoamperes (pA) bars applicable to all 3 families of current traces are illustrated. The vertical line indicates the zero current baseline. The mean peak step or the tail peak current IKs density in picoampres per picofarad (pA/pF) is plotted as a function of the step potential for cells expressing KV7.1-wild type (n = 7), KV7.1-A283T (n = 10), and KV7.1-R397W (n = 11) as shown in panels B and C. The individual peak tail I-V relations were described with a Boltzmann equation (dark gray line overlaying the data points, Figure 2C) to calculate the maximally activating current (IMAX), the midpoint potential of half maximal activation (V½), and slope factor (k) error bars indicate 95% confidence intervals. aP < .05 vs cells expressing KV7.1-A283T. bP <.05 vs cells expressing KV7.1-R397W.
Figure 4
Figure 4. Electrophysiological Properties of Wild-Type and Mutant HERG Channels
A, Whole cell recordings from Chinese hamster ovary cells cotransfected with wild-type HERG1a-DsRed and either wild-type HERG1b-GFP (HERG1a + HERG1b) or mutant HERG1b-R25W-GFP (HERG1a + HERG1b-R25W) are illustrated. Currents were recorded at room temperature using the following voltage-clamp protocol: 2-second depolarizations from −80-mV to 70-mV in 10-mV increments (to elicit step currents) followed by a 2-second repolarization to −50 mV (to elicit tail currents). Peak step and tail currents were measured at the points indicated by the arrows (pA, picoampere; pF, picofarad). Horizontal time scale and vertical current density scale bars applicable to both current traces are illustrated for the upper trace. B, Mean peak step current density in pA/pF plotted as a function of voltage for HERG1a + HERG1b (n = 16) and HERG1a + HERG1b-R25W (n = 16; P <.05 vs cells expressing HERG1a + HERG1b. C, Mean peak tail current density in pA/pF plotted as a function of voltage for HERG1a + HERG1b (n = 16) and HERG1a + HERG1b-R25W (n = 16; P <.05 vs cells expressing HERG1a + HERG1b). Error bars indicate 95% confidence intervals.

Comment in

Similar articles

Cited by

References

    1. Macdorman MF, Kirmeyer SE, Wilson EC. Fetal and Perinatal Mortality, United States, 2006. Natl Vital Stat Rep. 2012;60(8):1–22. - PubMed
    1. Cousens S, Blencowe H, Stanton C, et al. National, regional, and worldwide estimates of stillbirth rates in 2009 with trends since 1995: a systematic analysis. Lancet. 2011;377(9774):1319–1330. - PubMed
    1. Stillbirth Collaborative Research Network Writing Group. Causes of death among stillbirths. JAMA. 2011;306(22):2459–2468. - PMC - PubMed
    1. Tester DJ, Medeiros-Domingo A, Will ML, Haglund CM, Ackerman MJ. Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for postmortem genetic testing. Mayo Clin Proc. 2012;87(6):524–539. - PMC - PubMed
    1. Ackerman MJ, Siu BL, Sturner WQ, et al. Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA. 2001;286(18):2264–2269. - PubMed

Publication types

MeSH terms

Substances