Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;8(4):e59644.
doi: 10.1371/journal.pone.0059644. Epub 2013 Apr 3.

Ecological and evolutionary effects of stickleback on community structure

Affiliations

Ecological and evolutionary effects of stickleback on community structure

Simone Des Roches et al. PLoS One. 2013.

Abstract

Species' ecology and evolution can have strong effects on communities. Both may change concurrently when species colonize a new ecosystem. We know little, however, about the combined effects of ecological and evolutionary change on community structure. We simultaneously examined the effects of top-predator ecology and evolution on freshwater community parameters using recently evolved generalist and specialist ecotypes of three-spine stickleback (Gasterosteus aculeatus). We used a mesocosm experiment to directly examine the effects of ecological (fish presence and density) and evolutionary (phenotypic diversity and specialization) factors on community structure at lower trophic levels. We evaluated zooplankton biomass and composition, periphyton and phytoplankton chlorophyll-a concentration, and net primary production among treatments containing different densities and diversities of stickleback. Our results showed that both ecological and evolutionary differences in the top-predator affect different aspects of community structure and composition. Community structure, specifically the abundance of organisms at each trophic level, was affected by stickleback presence and density, whereas composition of zooplankton was influenced by stickleback diversity and specialization. Primary productivity, in terms of chlorophyll-a concentration and net primary production was affected by ecological but not evolutionary factors. Our results stress the importance of concurrently evaluating both changes in density and phenotypic diversity on the structure and composition of communities.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Zooplankton mass in grams per liter across different treatments for (A) crustaceans and (B) rotifers; primary producer abundance in terms of (C) concentration of periphyton and (D) phytoplankton chlorophyll-a concentration in milligrams per liter across treatments and total system net productivity (E) in terms of daily changes in dissolved oxygen concentration in milligrams per liter across treatments.
Bars represent standard error of the mean. Treatments correspond to NF = no fish, G = generalist ecotype, B = benthic ecotype, L = limnetic ecotype, BL = limnetic and benthic ecotype together, BBLL = double density of limnetic and benthic ecotype together.
Figure 2
Figure 2. The first two non-metric multidimensional scaling (NMDS) axes for zooplankton community composition.
Points represent individual tanks, colors represent treatments (NF = no fish, G = generalist ecotype, B = benthic ecotype, L = limnetic ecotype, BL = benthic and limnetic ecotype together, BBLL = double density of benthic and limnetic ecotype together), and polygons surround all tanks of a given treatment. The numbers on each axis correspond to the genera of zooplankton with the strongest loadings (negative and positive). For a graphical representation of the zooplankton genera loadings, please refer to Figure S1.

Similar articles

Cited by

References

    1. Bassar RD, Marshall MC, Lopez-Sepulcre A, Zandona E, Auer SK, et al. (2010) Local adaptation in Trinidadian guppies alters ecosystem processes. Proceedings of the National Academy of Sciences of the United States of America 107: 3616–3621. - PMC - PubMed
    1. Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, et al. (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443: 989–992. - PubMed
    1. Harmon LJ, Matthews B, Des Roches S, Chase JM, Shurin JB, et al. (2009) Evolutionary diversification in stickleback affects ecosystem functioning. Nature 458: 1167–1170. - PubMed
    1. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, et al. (2005) Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs 75: 3–35.
    1. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, et al. (2001) Ecology - Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294: 804–808. - PubMed

Publication types

LinkOut - more resources