Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Oct;13(8):1204-16.
doi: 10.2174/18715206113139990325.

Colon cancer therapy: recent developments in nanomedicine to improve the efficacy of conventional chemotherapeutic drugs

Affiliations
Review

Colon cancer therapy: recent developments in nanomedicine to improve the efficacy of conventional chemotherapeutic drugs

J Prados et al. Anticancer Agents Med Chem. 2013 Oct.

Abstract

The number of patients with colorectal cancer, the third most frequently diagnosed malignancy in the world, has increased markedly over the past 20 years and will continue to increase in the future. Despite recent advances in chemotherapy, currently used anticancer molecules are unable to improve the prognosis of advanced or recurrent colorectal cancer, which remains incurable. The transport of classical drugs by nanoparticles has shown great promise in terms of improving drug distribution and bioavailability, increasing tissue half-life and concentrating anticancer molecules in the tumor mass, providing optimal drug delivery to tumor tissue, and minimizing drug toxicity, including those effects associated with pharmaceutical excipients. In addition, colon cancer targeting may be improved by incorporating ligands for tumor-specific surface receptors. Similarly, nanoparticles may interact with key drug-resistance molecules to prevent a reduction in intracellular drug levels drug. Recently published data have provided convincing pre-clinical evidence regarding the potential of active-targeted nanotherapeutics in colon cancer therapy, although, unfortunately, only a few of these therapies have been translated into early-phase clinical trials. As nanotechnology promises to be a new strategy for improving the prognosis of colon cancer patients, it would be very useful to analyze recent progress in this field of research. This review discusses the current status of nanoparticle-mediated cancer-drug delivery, the challenges restricting its application, and the potential implications of its use in colon cancer therapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources