Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr 10:10:12.
doi: 10.1186/1743-8977-10-12.

Thoracic and respirable particle definitions for human health risk assessment

Affiliations

Thoracic and respirable particle definitions for human health risk assessment

James S Brown et al. Part Fibre Toxicol. .

Abstract

Background: Particle size-selective sampling refers to the collection of particles of varying sizes that potentially reach and adversely affect specific regions of the respiratory tract. Thoracic and respirable fractions are defined as the fraction of inhaled particles capable of passing beyond the larynx and ciliated airways, respectively, during inhalation. In an attempt to afford greater protection to exposed individuals, current size-selective sampling criteria overestimate the population means of particle penetration into regions of the lower respiratory tract. The purpose of our analyses was to provide estimates of the thoracic and respirable fractions for adults and children during typical activities with both nasal and oral inhalation, that may be used in the design of experimental studies and interpretation of health effects evidence.

Methods: We estimated the fraction of inhaled particles (0.5-20 μm aerodynamic diameter) penetrating beyond the larynx (based on experimental data) and ciliated airways (based on a mathematical model) for an adult male, adult female, and a 10 yr old child during typical daily activities and breathing patterns.

Results: Our estimates show less penetration of coarse particulate matter into the thoracic and gas exchange regions of the respiratory tract than current size-selective criteria. Of the parameters we evaluated, particle penetration into the lower respiratory tract was most dependent on route of breathing. For typical activity levels and breathing habits, we estimated a 50% cut-size for the thoracic fraction at an aerodynamic diameter of around 3 μm in adults and 5 μm in children, whereas current ambient and occupational criteria suggest a 50% cut-size of 10 μm.

Conclusions: By design, current size-selective sample criteria overestimate the mass of particles generally expected to penetrate into the lower respiratory tract to provide protection for individuals who may breathe orally. We provide estimates of thoracic and respirable fractions for a variety of breathing habits and activities that may benefit the design of experimental studies and interpretation of particle size-specific health effects.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Thoracic particulate mass fraction criteria (relative to total airborne particles) for size-selective sampling. Individual data points are observed human head penetration efficiency during oral inhalation for an inspiratory flow rate of 43.5 L/min, i.e., light exercise [5-7]. As stated by ACGIH [3], the sampling criterion is offset to the right of experimental data to overestimate the amount of exposure to the lower respiratory tract, i.e., the lungs, and correspondingly to provide a greater level of protection for exposed workers. From ACGIH®, Particle Size-Selective Sampling in the Workplace, Report of the ACGIH® Technical Committee on Air Sampling Procedures. Copyright 1985. Reprinted with permission. Courtesy: Dr. Otto G. Raabe.
Figure 2
Figure 2
Thoracic fraction, i.e., particle penetration through the extrathoracic region, P(ET), as a function of breathing route. Penetration data are with respect to particle diameter as a function of the fraction of air inhaled through the mouth (Fm) in an adult male engaged in light exercise relative to particles entering the respiratory tract. Curves are for the Fm of 0.00, 0.25, 0.50, 0.75, and 1.00 as indicated on the figure. Horizontal red line highlights 50% penetration.
Figure 3
Figure 3
Respirable fraction, i.e., particle penetration through the tracheobronchial region, P(TB), as a function of breathing route. Penetration data are with respect to particle diameter as a function of the fraction of air inhaled through the mouth (Fm) in an adult male engaged in light exercise relative to particles entering the respiratory tract. Curves are for the Fm of 0.00, 0.25, 0.50, 0.75, and 1.00 as indicated on the figure. Horizontal red line highlights 50% penetration.
Figure 4
Figure 4
Thoracic fraction, i.e., particle penetration through the extrathoracic region, P(ET)avg, in adults and a 10 yr-old child. Data are daily averaged values for a median activity level, gradual augmenter breathing habit, and uncorrected for particle inhalability. Child-A and child-B are for a scaling factor of 1.0 and 1.26 in Equations 2 and 3, respectively. Horizontal red line highlights 50% penetration which occurs at 3.1 μm (adult female), 3.4 μm (adult male), 4.1 μm (child-B), and 5.1 μm (child-A).
Figure 5
Figure 5
Respirable fraction, i.e., particle penetration through the tracheobronchial region, P(TB)avg, in adults and a 10 yr-old child. Data are daily averaged values for a median activity level, gradual augmenter breathing habit, and uncorrected for particle inhalability. Child-A and child-B are for a scaling factor of 1.0 and 1.26 in Equations 2 and 3, respectively. Horizontal red line highlights 50% penetration which occurs at 2.7 μm (adult female), 3.1 μm (adult male), 3.6 μm (child-B), and 4.4 μm (child-A).

References

    1. Morgan WK. Industrial bronchitis. Br J Ind Med. 1978;35(4):285–291. - PMC - PubMed
    1. European Committee for Standardization (CEN) Workplace atmospheres-size fraction definitions for measurement of airborne particles (Report No. BS EN 481:1993) London, England: CEN, British Standards Institute; 1993.
    1. American Conference of Governmental Industrial Hygienis (ACGIH) TLVs and BEIs: Based on the documentation of the threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, OH: ACGIH; 2005.
    1. American Conference of Governmental Industrial Hygienis (ACGIH) Particle size-selective sampling in the workplace. Report of the ACGIH Technical Committee on Air Sampling Procedures. Cincinnati, OH: ACGIH; 1985.
    1. Lippmann M. In: Handbook of Physiology – Reactions to Environmental Agents. Lee DHK, Falk HL, Murphy SD, Geiger SR, Bethesda MD, editor. : American Physiological Society; 1977. Regional deposition of particles in the human respiratory tract; pp. 213–232.

Publication types

MeSH terms