Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 27;19(22):7243-9.
doi: 10.1002/chem.201300042. Epub 2013 Apr 9.

Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine

Affiliations

Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine

Konggang Qu et al. Chemistry. .

Abstract

A facile, economic and green one-step hydrothermal synthesis route using dopamine as source towards photoluminescent carbon nanoparticles (CNPs) is proposed. The as-prepared CNPs have an average size about 3.8 nm. The emission spectra of the CNPs are broad, ranging from approximately 380 (purple) to approximately 525 nm (green), depending on the excitation wavelengths. Due to the favorable optical properties, the CNPs can readily enter into A549 cells and has been used for multicolor biolabeling and bioimaging. Most importantly, the as-prepared CNPs contain distinctive catechol groups on their surfaces. Due to the special response of catechol groups to Fe(3+) ions, we further demonstrate that such wholly new CNPs can serve as a very effective fluorescent sensing platform for label-free sensitive and selective detection of Fe(3+) ions and dopamine with a detection limit as low as 0.32 μM and 68 nM, respectively. The new "mix-and-detect" strategy is simple, green, and exhibits high sensitivity and selectivity. The present method was also applied to the determination of Fe(3+) ions in real water samples and dopamine in human urine and serum samples successfully.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources