Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Jun:193-194:24-34.
doi: 10.1016/j.cis.2013.03.003. Epub 2013 Mar 25.

Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review

Affiliations
Review

Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review

Vinod Kumar Gupta et al. Adv Colloid Interface Sci. 2013 Jun.

Abstract

Adsorption is a widely used technique for the separation and removal of pollutants from wastewaters. Carbon nanotubes (CNTs) are emerging as potential adsorbents because of its well defined cylindrical hollow structure, large surface area, high aspect ratios, hydrophobic wall and easily modified surfaces. In this review, dye adsorption capability of CNTs and CNT based composites from aqueous system has been compiled. This article provides the information about the defect, adsorption sites on CNTs and batch adsorption studies under the influence of various operational parameters such as contact time, solution pH, temperatures etc. and deals with mechanisms involved in adsorption of dyes onto CNTs. From the literature reviewed, it is observed that single walled carbon nanotubes (SWCNTs) show higher adsorption capacity than multi walled carbon nanotubes (MWCNTs) and functionalized and CNT composite have better sorption capacity than as grown CNTs. It is evident from the literature that CNT based nanosorbents have shown good potential for the removal of dyes from aqueous solution. However, still more research work should be focused on the development of cost effective, higher efficient and environmental friendly CNT based nanosorbents for their commercial applications.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources