Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug 1;216(Pt 15):2858-69.
doi: 10.1242/jeb.084178. Epub 2013 Apr 11.

Thermal physiology of the fingered limpet Lottia digitalis under emersion and immersion

Affiliations

Thermal physiology of the fingered limpet Lottia digitalis under emersion and immersion

Brittany E Bjelde et al. J Exp Biol. .

Abstract

Marine animals living high in the rocky intertidal zone experience long durations of aerial emersion, sometimes enduring rapid increases in temperature. To date, much of our understanding of the thermal physiology of intertidal organisms comes from studies in which organisms are exposed to increasing temperatures when immersed, with the added effect of aerial emersion rarely considered. In this study, we examined the physiological response of the finger limpet, Lottia digitalis, to increases in temperature under both immersed and emersed conditions. We investigated the thermal sensitivity and upper temperature tolerance of limpets through assessment of cardiac performance, metabolic rate, glycogen depletion and maintenance of protein integrity. Cardiac performance in response to ecologically relevant increases in temperature was similar in emersed and immersed limpets from 15 to 35°C and showed multiple break patterns in heart rate as temperature was increased. Overall, emersed limpets had a greater upper thermal limit on cardiac performance, with the ability to maintain heart rate at a temperature 3-5°C higher than that for immersed limpets. Metabolism in limpets also differed significantly between emersion and immersion, where a significant depression in aerobic metabolic rate was observed under immersion with increasing temperature. Greater levels of ubiquitin-conjugated proteins were found under emersed conditions compared with immersed limpets. Maintaining cardiac performance and aerobic metabolism to higher temperatures under emersed conditions is likely reflective of physiological adaptations to live in an aerially exposed environment. Measured field temperatures where fingered limpets were collected demonstrated that limpets have a narrow thermal safety margin for aerobic performance, and currently experience multiple days where summer temperatures might exceed their threshold limits.

Keywords: ecophysiology; gastropod; intertidal; stress tolerance; temperature.

PubMed Disclaimer

Publication types

LinkOut - more resources