Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 28;7(5):4119-28.
doi: 10.1021/nn400405t. Epub 2013 Apr 18.

Noninvasive photodetachment of stem cells on tunable conductive polymer nano thin films: selective harvesting and preserved differentiation capacity

Affiliations

Noninvasive photodetachment of stem cells on tunable conductive polymer nano thin films: selective harvesting and preserved differentiation capacity

Jungmok You et al. ACS Nano. .

Abstract

Viable mesenchymal stem cells (MSCs) were efficiently and selectively harvested by near-infrared (NIR) light using the photothermal effect of a conductive polymer nano thin film. The poly(3,4-ethylenedioxy thiophene) (PEDOT)-coated cell culture surfaces were prepared via a simple and fast solution-casting polymerization (SCP) technique. The absorption of PEDOT thin films in the NIR region was effectively triggered cell harvesting upon exposure to an NIR source. By controlling the NIR absorption of the PEDOT film through electrochemical doping or growing PEDOT with different thin film thickness from 70 to 300 nm, the proliferation and harvesting of MSCs on the PEDOT surface were controlled quantitatively. This light-induced cell detachment method based on PEDOT films provides the temporal and spatial control of cell harvesting, as well as cell patterning. The harvested stem cells were found to be alive and well proliferated despite the use of temperature increase by NIR. More importantly, the harvested MSCs by this method preserved their intrinsic characteristics as well as multilineage differentiation capacities. This PEDOT surfaces could be used for repetitive culture and detachment of MSCs or for efficient selection or depletion of a specific subset from heterogeneous population during culture of various tissue-derived cells because there were no photodegradation and photobreakage in the PEDOT films by NIR exposure.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources