SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler
- PMID: 23587118
- PMCID: PMC3626529
- DOI: 10.1186/2047-217X-1-18
SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler
Erratum in
-
Erratum: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler.Gigascience. 2015 Jul 8;4:30. doi: 10.1186/s13742-015-0069-2. eCollection 2015. Gigascience. 2015. PMID: 26161257 Free PMC article.
Abstract
Background: There is a rapidly increasing amount of de novo genome assembly using next-generation sequencing (NGS) short reads; however, several big challenges remain to be overcome in order for this to be efficient and accurate. SOAPdenovo has been successfully applied to assemble many published genomes, but it still needs improvement in continuity, accuracy and coverage, especially in repeat regions.
Findings: To overcome these challenges, we have developed its successor, SOAPdenovo2, which has the advantage of a new algorithm design that reduces memory consumption in graph construction, resolves more repeat regions in contig assembly, increases coverage and length in scaffold construction, improves gap closing, and optimizes for large genome.
Conclusions: Benchmark using the Assemblathon1 and GAGE datasets showed that SOAPdenovo2 greatly surpasses its predecessor SOAPdenovo and is competitive to other assemblers on both assembly length and accuracy. We also provide an updated assembly version of the 2008 Asian (YH) genome using SOAPdenovo2. Here, the contig and scaffold N50 of the YH genome were ~20.9 kbp and ~22 Mbp, respectively, which is 3-fold and 50-fold longer than the first published version. The genome coverage increased from 81.16% to 93.91%, and memory consumption was ~2/3 lower during the point of largest memory consumption.
Figures
References
-
- Earl D, Bradnam K, St John J, Darling A, Lin D, Fass J, Yu HO, Buffalo V, Zerbino DR, Diekhans M, Nguyen N, Ariyaratne PN, Sung WK, Ning Z, Haimel M, Simpson JT, Fonseca NA, Docking TR, Ho IY, Rokhsar DS, Chikhi R, Lavenier D, Chapuis G, Naquin D, Maillet N, Schatz MC, Kelley DR, Phillippy AM, Koren S. et al.Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome Res. 2011;21:2224–2241. doi: 10.1101/gr.126599.111. - DOI - PMC - PubMed
-
- Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S, Berlin AM, Aird D, Costello M, Daza R, Williams L, Nicol R, Gnirke A, Nusbaum C, Lander ES, Jaffe DB. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A. 2011;108:1513–1518. doi: 10.1073/pnas.1017351108. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous