Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr 15:12:30.
doi: 10.1186/1476-069X-12-30.

Interaction of occupational manganese exposure and alcohol drinking aggravates the increase of liver enzyme concentrations from a cross-sectional study in China

Affiliations

Interaction of occupational manganese exposure and alcohol drinking aggravates the increase of liver enzyme concentrations from a cross-sectional study in China

Qi Deng et al. Environ Health. .

Abstract

Background: Over exposure to manganese (Mn) can damage the human central nervous system and potentially cause liver toxicity. Alcohol drinking is also one of the well-known harmful factors to hepatic organism. The interaction between Mn exposure and alcohol consumption to liver function was investigated in this study.

Methods: A total of 1112 on-the-spot workers were included in the cross-sectional survey from a large scale of manganese exposed workers healthy cohort (MEWHC) in a ferro-manganese refinery company. A questionnaire was used to collect the demographic information, occupational history, and alcohol drinking habits. Occupational health examination was carried out for each worker. The five key serum indices, including total bilirubin (TBILI), direct bilirubin (DBILI), indirect bilirubin (IBILI), alanine transaminase (ALT), and aspartate transaminase (AST), were determined to evaluate the liver function of each subject.

Results: Workers exposed to high levels of Mn had significantly elevated serum concentrations of liver enzymes (DBILI: 3.84±1.20 μmol/L, ALT: 27.04±19.12 IU/L, and AST: 29.96±16.68 IU/L), when compared to those in the low-exposure group (DBIL: 3.54±0.85 μmol/L, ALT: 20.38±10.97 IU/L, and AST: 26.39±8.07 IU/L), all P<0.01. These serum indices had a significantly increasing trend with the elevation of Mn exposure level (Ptrend <0.01). In addition, the workers with alcohol drinking also showed higher concentrations of liver enzymes than those non-drinkers, especially, and there was significant interaction between Mn exposure and alcohol consumption in terms of these three indices (P<0.001).

Conclusions: Occupational exposure to Mn can lead to a dose-dependent increase of liver enzyme concentrations, and interact with alcohol drinking to potentially aggravate the liver damage. It will be important for Mn exposed workers to control drinking and also assess liver function in the occupational health examination.

PubMed Disclaimer

References

    1. Wittczak T, Dudek W, Krakowiak A, Walusiak J, Palczynski C. Occupational asthma due to manganese exposure: a case report. Int J Occup Med Environ Health. 2008;21:81–83. - PubMed
    1. Roels H, Lauwerys R, Buchet JP, Genet P, Sarhan MJ, Hanotiau I, de Fays M, Bernard A, Stanescu D. Epidemiological survey among workers exposed to manganese: effects on lung, central nervous system, and some biological indices. Am J Ind Med. 1987;11:307–327. doi: 10.1002/ajim.4700110308. - DOI - PubMed
    1. Olanow CW. Manganese-induced parkinsonism and Parkinson's disease. Ann NY Acad Sci. 2004;1012:209–223. doi: 10.1196/annals.1306.018. - DOI - PubMed
    1. Bowler RM, Koller W, Schulz PE. Parkinsonism due to manganism in a welder: neurological and neuropsychological sequelae. Neurotoxicology. 2006;27:327–332. doi: 10.1016/j.neuro.2005.10.011. - DOI - PubMed
    1. Jankovic J. Searching for a relationship between manganese and welding and Parkinson's disease. Neurology. 2005;64:2021–2028. doi: 10.1212/01.WNL.0000166916.40902.63. - DOI - PubMed

Publication types

MeSH terms