Biologic complexity in sickle cell disease: implications for developing targeted therapeutics
- PMID: 23589705
- PMCID: PMC3621302
- DOI: 10.1155/2013/694146
Biologic complexity in sickle cell disease: implications for developing targeted therapeutics
Abstract
Current therapy for sickle cell disease (SCD) is limited to supportive treatment of complications, red blood cell transfusions, hydroxyurea, and stem cell transplantation. Difficulty in the translation of mechanistically based therapies may be the result of a reductionist approach focused on individual pathways, without having demonstrated their relative contribution to SCD complications. Many pathophysiologic processes in SCD are likely to interact simultaneously to contribute to acute vaso-occlusion or chronic vasculopathy. Applying concepts of systems biology and network medicine, models were developed to show relationships between the primary defect of sickle hemoglobin (Hb S) polymerization and the outcomes of acute pain and chronic vasculopathy. Pathophysiologic processes such as inflammation and oxidative stress are downstream by-products of Hb S polymerization, transduced through secondary pathways of hemolysis and vaso-occlusion. Pain, a common clinical trials endpoint, is also complex and may be influenced by factors outside of sickle cell polymerization and vascular occlusion. Future sickle cell research needs to better address the biologic complexity of both sickle cell disease and pain. The relevance of individual pathways to important sickle cell outcomes needs to be demonstrated in vivo before investing in expensive and labor-intensive clinical trials.
Figures
References
-
- Sickle Cell Disease—Data and Statistics. 2010, http://www.cdc.gov/ncbddd/sicklecell/data.html.
-
- Platt OS, Brambilla DJ, Rosse WF, et al. Mortality in sickle cell disease—life expectancy and risk factors for early death. The New England Journal of Medicine. 1994;330(23):1639–1644. - PubMed
-
- Sickle Cell Research for Treatment and Cure. National Institutes of Health—National Heart Lung, and Blood Institute; 2002.
-
- Vichinsky E. Emerging “A” therapies in hemoglobinopathies: agonists, antagonists, antioxidants, and arginine. Hematology American Society of Hematology Education Program. 2012;2012:271–275. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
