Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Mar;27(1):85-98.
doi: 10.1016/j.bpa.2012.12.002.

Anaemia: can we define haemoglobin thresholds for impaired oxygen homeostasis and suggest new strategies for treatment?

Affiliations
Review

Anaemia: can we define haemoglobin thresholds for impaired oxygen homeostasis and suggest new strategies for treatment?

Gregory M T Hare et al. Best Pract Res Clin Anaesthesiol. 2013 Mar.

Abstract

Observational clinical studies in perioperative medicine have defined a progressive increase in mortality that is proportional to both chronic preoperative anaemia and acute interpretative reductions in haemoglobin concentration (Hb). However, this knowledge has not yet helped to define the critical Hb threshold for organ injury and mortality in specific patient populations or in individual patients. Nor has this knowledge enabled us to develop effective treatment strategies for anaemia, as evident from the lack of a demonstrable improvement in survival in patients randomised to higher Hb levels by various treatment strategies including allogeneic red blood cell transfusion, erythropoiesis-stimulating agents (ESAs) and haemoglobin-based oxygen carriers (HBOCs). These findings emphasise the need for a clearer understanding of the mechanism of anaemia-induced mortality. Towards achieving this goal, experimental studies have defined adaptive mechanism by which oxygen homeostasis is maintained during acute anaemia. The mechanisms include: (1) effective sensing of anaemia-induced tissue hypoxia; (2) adaptive cardiovascular responses to maintain adequate tissue oxygen delivery; (3) heterogeneity of organ-specific oxygen delivery to preferentially sustain vital organs which are essential for acute survival (heart and brain); (4) evidence of increased vital organ injury with interruption of cardiovascular responses to anaemia and (5) evidence of activation of adaptive cellular responses to maintain oxygen homeostasis and support survival during acute anaemia. Understanding these mechanisms may allow us to define treatment thresholds and novel treatment strategies for acute anaemia based on biological markers of tissue hypoxia. The overall goal of these approaches is to improve patient outcomes, including event-free perioperative survival.

PubMed Disclaimer

Publication types