Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr 4;7(4):e2145.
doi: 10.1371/journal.pntd.0002145. Print 2013.

Spatio-temporal dynamics of cholera during the first year of the epidemic in Haiti

Affiliations

Spatio-temporal dynamics of cholera during the first year of the epidemic in Haiti

Jean Gaudart et al. PLoS Negl Trop Dis. .

Abstract

Background: In October 2010, cholera importation in Haiti triggered an epidemic that rapidly proved to be the world's largest epidemic of the seventh cholera pandemic. To establish effective control and elimination policies, strategies rely on the analysis of cholera dynamics. In this report, we describe the spatio-temporal dynamics of cholera and the associated environmental factors.

Methodology/principal findings: Cholera-associated morbidity and mortality data were prospectively collected at the commune level according to the World Health Organization standard definition. Attack and mortality rates were estimated and mapped to assess epidemic clusters and trends. The relationships between environmental factors were assessed at the commune level using multivariate analysis. The global attack and mortality rates were 488.9 cases/10,000 inhabitants and 6.24 deaths/10,000 inhabitants, respectively. Attack rates displayed a significantly high level of spatial heterogeneity (varying from 64.7 to 3070.9 per 10,000 inhabitants), thereby suggesting disparate outbreak processes. The epidemic course exhibited two principal outbreaks. The first outbreak (October 16, 2010-January 30, 2011) displayed a centrifugal spread of a damping wave that suddenly emerged from Mirebalais. The second outbreak began at the end of May 2011, concomitant with the onset of the rainy season, and displayed a highly fragmented epidemic pattern. Environmental factors (river and rice fields: p<0.003) played a role in disease dynamics exclusively during the early phases of the epidemic.

Conclusion: Our findings demonstrate that the epidemic is still evolving, with a changing transmission pattern as time passes. Such an evolution could have hardly been anticipated, especially in a country struck by cholera for the first time. These results argue for the need for control measures involving intense efforts in rapid and exhaustive case tracking.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Mapping one year of cholera morbidity and mortality rates in Haiti.
The colored scales represent yearly attack (a) and mortality (b) rates per 10,000 inhabitants in communes of Haiti (from October 16, 2010 to October 15, 2011).
Figure 2
Figure 2. Temporal cholera dynamics.
Daily cholera cases (red), daily rainfall (blue), and epidemic phases (grey) (September 15, 2010 to October 16, 2011) are presented. Accumulated rainfall data were obtained from the Daily Global and Regional Rainfall (TMPA-RT 3B42RT derived).
Figure 3
Figure 3. Daily incidence rates (DIRs) and high-risk spatial clusters for each epidemic phase.
Figure 4
Figure 4. Epidemic profiles of the first outbreak phases (phases 1 and 2).
a) Hierarchical cluster analysis (HCA) of communal epidemic profiles and b) Communal mapping of the epidemic profile classes. Median (25th–75th percentiles) communal cases observed during the period are provided for each class of profile. The graphs represent the median (solid line) and 25th–75th percentiles (dotted lines) of daily communal cases standardized by the total number of cases during the period.
Figure 5
Figure 5. Spectral analysis of time series.
Analysis of cases (a), rainfall (b), and cross-wavelet (c) between cases and rainfall are presented. The Y-axes represent length of the wavelet analysis window (from 3 to 26 days) and the color scales represent the spectral values for each length of the analysis window.

Comment in

Similar articles

Cited by

References

    1. Jenson D, Szabo V, Duke FHI (2011) Haiti Humanities Laboratory Student Research Team (2011) Cholera in Haiti and other Caribbean regions, 19th century. Emerg Infect Dis 17: 2130–2135. - PMC - PubMed
    1. Frerichs RR, Keim PS, Barrais R, Piarroux R (2012) Nepalese origin of cholera epidemic in Haiti. Clin Microbiol Infect 18: E158–E163. - PubMed
    1. Hendriksen RS, Price LB, Schupp JM, Gillece JD, Kaas RS, et al. (2011) Population genetics of Vibrio cholerae from Nepal in 2010: evidence on the origin of the Haitian outbreak. MBio 2: e00157–11. - PMC - PubMed
    1. Periago MR, Frieden TR, Tappero JW, De Cock KM, Aasen B, et al. (2012) Elimination of cholera transmission in Haiti and the Dominican Republic. Lancet 379: e12–13. - PubMed
    1. Andrews JR, Basu S (2011) Transmission dynamics and control of cholera in Haiti: an epidemic model. Lancet 377: 1248–1255. - PMC - PubMed

Publication types