Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jul;1(1):77-82.
doi: 10.7774/cevr.2012.1.1.77. Epub 2012 Jul 31.

Recombinant influenza viruses as delivery vectors for hepatis B virus epitopes

Affiliations

Recombinant influenza viruses as delivery vectors for hepatis B virus epitopes

Jae-Min Song et al. Clin Exp Vaccine Res. 2012 Jul.

Abstract

Purpose: Neuraminidase (NA) of influenza virus contains stalk region that shows a great deal of variability in both amino acid sequence and length. In this paper, we investigated generation of recombinant influenza viruses that had hepatitis B virus (HBV) B cell epitopes in the NA stalk region as a dual vaccine candidate.

Materials and methods: We used the WSH-HK reassortant helper virus for rescue of recombinant influenza virus containing HBV epitopes and reverse genetic protocol based on the use of micrococcal nuclease-treated virus cores for reconstitution of ribonucleoproteins.

Results: We successfully generated a chimeric influenza viruses which contained 22 amino acid peptides in the stalk region derived from the surface and pre-surface protein HBV. The growth kinetics of the recombinant viruses was investigated after infection of Madin-Darby canine kidney (MDCK) and Madin-Darby bovine kidney (MDBK) cells and the rIV-BVPreS virus showed higher titer than other viruses in MDCK cells. We also confirmed the presence of HBV epitopes in the chimeric viruses by enzyme-linked immunosorbent assay (ELISA) using anti-HBV polyclonal antibody. When the ratio of recombinant virus verse wild type virus was calculated by ELISA, recombinant viruses exhibited 2 fold higher values than the wild type virus.

Conclusion: These results suggest that chimeric influenza virus which contained foreign antigens can be used as dual vaccine against both HBV and influenza viruses.

Keywords: Chimeric virus; Dual vaccine; NA stalk.

PubMed Disclaimer

Conflict of interest statement

No potential conflict of interest relevant to this article was reported.

Figures

Fig. 1
Fig. 1
Generation of recombinant influenza A virus. Reconstituted ribonucleoprotein (RNP) complex which has RNA in vitro transcribed with foreign epitopes and functional viral core proteins was transfected into Madin-Darby bovine kidney (MDBK) cells that had been infected with WSN-HK helper virus. Recombinant influenza A virus was selected by plaque assay on MDBK cells in the absence of protease and further amplified in MDBK cells. NA, neuraminidase; NP, nucleoprotein.
Fig. 2
Fig. 2
Amino acid sequences of the neuraminidase (NA) stalk mutants from residues 36 to 80 of WSN NA. The B cell epitope sequences derived from HBV surface (rIV-BVS) and PreS2 (rIV-BVPreS2) protein are italicized. NAmut is the partial amino acid sequences of mutant NA on the intermediate cloning vector, pT3WSN-NAmut, for introducing foreign epitopes.
Fig. 3
Fig. 3
Growth properties of recombinant influenza A viruses. rIV-BVS and rIV-BVPreS2 were cultured in Madin-Darby bovine kidney (MDBK) (A) and Madin-Darby canine kidney (MDCK) (B) cells for 72 hours then the virus titer of the sample was determined by plaque assay. PFU, plaque-forming unit.
Fig. 4
Fig. 4
Binding properties between recombinant influenza A viruses and hepatitis B virus (HBV) antibody. rIV-BVS and rIV-BVPreS2 were coated on the microtiter plates and tested the binding activity of the anti-HBV polyclonal antibody by enzyme-linked immunosorbent assay.

Similar articles

Cited by

References

    1. Baum C, Schambach A, Bohne J, Galla M. Retrovirus vectors: toward the plentivirus? Mol Ther. 2006;13:1050–1063. - PubMed
    1. Li C, Bowles DE, van Dyke T, Samulski RJ. Adeno-associated virus vectors: potential applications for cancer gene therapy. Cancer Gene Ther. 2005;12:913–925. - PMC - PubMed
    1. Young LS, Searle PF, Onion D, Mautner V. Viral gene therapy strategies: from basic science to clinical application. J Pathol. 2006;208:299–318. - PubMed
    1. Arribillaga L, de Cerio AL, Sarobe P, et al. Vaccination with an adenoviral vector encoding hepatitis C virus (HCV) NS3 protein protects against infection with HCV-recombinant vaccinia virus. Vaccine. 2002;21:202–210. - PubMed
    1. Fournillier A, Gerossier E, Evlashev A, et al. An accelerated vaccine schedule with a poly-antigenic hepatitis C virus MVA-based candidate vaccine induces potent, long lasting and in vivo cross-reactive T cell responses. Vaccine. 2007;25:7339–7353. - PubMed