Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 May 7:776:24-30.
doi: 10.1016/j.aca.2013.03.040. Epub 2013 Mar 25.

Polyphosphonate induced coacervation of chitosan: encapsulation of proteins/enzymes and their biosensing

Affiliations
Review

Polyphosphonate induced coacervation of chitosan: encapsulation of proteins/enzymes and their biosensing

Hailing Liu et al. Anal Chim Acta. .

Abstract

Based on the polyphosphonate-assisted coacervation of chitosan, a simple and versatile procedure for the encapsulation of proteins/enzymes in chitosan-carbon nanotubes (CNTs) composites matrix was developed. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrum (EDS) mapping demonstrated the hemoglobin (Hb) uniformly distributed into chitosan-CNTs composites matrix. Raman measurements indicated the CNTs in composites matrix retained the electronic and structural integrities of the pristine CNTs. Fourier transform infrared (FT-IR), ultraviolet-visible (UV-vis) and circular dichroism (CD) spectroscopy displayed the encapsulated Hb preserved their near-native structure, indicating the polyphosphonate-chitosan-CNTs composites possessed excellent biocompatibility for the encapsulation of proteins/enzymes. Electrochemical measurements indicated the encapsulated Hb could directly exchange electron with the substrate electrode. Moreover, the modified electrode showed excellent bioelectrocatalytic activity for the reduction of hydrogen peroxide. Under optimum experimental conditions, the fabricated electrochemical sensor displayed the fast response (less than 3s), wide linear range (7.0×10(-7) to 2.0×10(-3)M) and low detection limit (4.0×10(-7)M) for the determination of hydrogen peroxide. This newly developed protocol was simple and mild and would certainly find extensive applications in biocatalysis, biosensors, bioelectronics and biofuel cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources