Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Sep;31(7):1228-35.
doi: 10.1016/j.mri.2013.03.005. Epub 2013 Apr 18.

Functional neuroimaging of inner fields-of-view with 2D-selective RF excitations

Affiliations

Functional neuroimaging of inner fields-of-view with 2D-selective RF excitations

Jürgen Finsterbusch. Magn Reson Imaging. 2013 Sep.

Abstract

Echo-planar imaging is widely used in functional neuroimaging but suffers from its pronounced sensitivity to field inhomogeneities that cause geometric distortions and image blurring which both limit the effective in-plane resolution achievable. In this work, it is shown how inner-field-of-view techniques based on 2D-selective RF excitations (2DRF) can be applied to reduce the field-of-view in the phase-encoding direction without aliasing and increase the in-plane resolution accordingly. Free-induction-decay (FID) EPI and echo-train-shifted (T2*-weighted) and standard (T2-weighted) spin-echo (SE) EPI with in-plane resolutions of up to 0.5×1.0mm(2) (slice thickness 5mm) were acquired at 3T. Unwanted signal contributions of 2DRF side excitations were shifted out of the object (FID-EPI) or of the refocusing plane by tilting the excitation plane (SE-EPI). Brain activation in healthy volunteers was investigated with checkerboard and finger-tapping block-design paradigms. Brain activation could be detected with all sequences and contrasts, most reliably with FID-EPI due to its higher signal amplitude and the longer 2DRF excitation that are more sensitive to magnetic field inhomogeneities. In conclusion, inner-FOV EPI based on 2DRF excitations could help to improve the spatial resolution of fMRI of focal target regions, e.g., for applications in the spinal cord.

Keywords: 2D-selective RF excitation; EPI; Functional neuroimaging; High resolution; Inner field-of-view; fMRI.

PubMed Disclaimer

LinkOut - more resources