Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug 6:244:113-21.
doi: 10.1016/j.neuroscience.2013.04.018. Epub 2013 Apr 18.

Chronic brain ischemia induces the expression of glial glutamate transporter EAAT2 in subcortical white matter

Affiliations

Chronic brain ischemia induces the expression of glial glutamate transporter EAAT2 in subcortical white matter

Y Yatomi et al. Neuroscience. .

Abstract

Glutamate plays a central role in brain physiology and pathology. The involvement of excitatory amino acid transporters (EAATs) in neurodegenerative disorders including acute stroke has been widely studied, but little is known about the role of glial glutamate transporters in white matter injury after chronic cerebral hypoperfusion. The present study evaluated the expression of glial (EAAT1 and EAAT2) and neuronal (EAAT3) glutamate transporters in subcortical white matter and cortex, before and 3-28 days after the ligation of bilateral common carotid arteries (LBCCA) in rat brain. K-B staining showed a gradual increase of demyelination in white matter after ischemia, while there was no cortical involvement. Between 3 and 7 days after LBCCA, a significant increase in EAAT2 protein levels was observed in the ischemic brain and the number of EAAT2-positive cells also significantly increased both in the cortical and white matter lesions. EAAT2 was detected in glial-fibrillary acidic protein (GFAP)-positive astrocytes in both the cortex and white matter, but not in neuronal and oligodendroglial cells. EAAT1 was slightly elevated after ischemia only in the white matter, but EAAT3 was at almost similar levels both in the cortex and white matter after ischemia. A significant increase in EAAT2 expression level was also noted in the deep white matter of chronic human ischemic brain tissue compared to the control group. Our findings suggest important roles for up-regulated EAAT2 in chronic brain ischemia especially in the regulation of high-affinity of extracellular glutamate and minimization of white matter damage.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources