Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Jun 13;92(22):1037-45.
doi: 10.1016/j.lfs.2013.04.001. Epub 2013 Apr 17.

Neovascularization in diabetes and its complications. Unraveling the angiogenic paradox

Affiliations
Review

Neovascularization in diabetes and its complications. Unraveling the angiogenic paradox

Paulo Zoé Costa et al. Life Sci. .

Abstract

Diabetes mellitus (DM) is a chronic metabolic disease characterized by the presence of hyperglycemia, which can lead to many complications over time. These complications, such as nephropathy, retinopathy, neuropathy, impaired wound healing and accelerated atherosclerosis, are implicated with a large number of cellular and subcellular changes on vessels. In agreement, evidence indicates that in retinopathy, nephropathy and atherosclerotic plaque, there is excessive angiogenesis, whereas in wound healing and myocardial perfusion, blood vessel growth is impaired. Despite the awareness of this angiogenic paradox, many questions remain unanswered. This review aims at highlighting the different microvascular and macrovascular complications that are often concurrent in diabetic patients. A revision of the recent findings published in the literature regarding the angiogenic paradox will be performed. Apparently, endothelial dysfunction, as well as molecules such as vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF) play a major role in diabetic vascular complications. Specific tissues with impaired angiogenesis exhibit microenvironment features, such as increased PAI-1/uPA ratio and decreased blood flow, whereas TGFbeta increases extracellular matrix deposition, preventing the vascularization process. In addition, the monocytes/macrophages are important in endothelium activation for arteriogenesis and its arteriogenic response is reduced, leading to impaired collateral artery growth. Moreover, molecular mechanisms involved will be addressed, including abnormalities in growth factor, cytokines and metabolic derangements.

PubMed Disclaimer

Publication types

MeSH terms