Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug:92:42-6.
doi: 10.1016/j.bioelechem.2013.03.002. Epub 2013 Apr 3.

A critical evaluation of whole cell patch clamp studies on electroporation using the voltage sensitive dye ANNINE-6

Affiliations

A critical evaluation of whole cell patch clamp studies on electroporation using the voltage sensitive dye ANNINE-6

Lars H Wegner et al. Bioelectrochemistry. 2013 Aug.

Abstract

The patch clamp technique in the whole cell configuration is potentially a powerful tool to investigate electroporation (electric-field-induced membrane permeabilization). Membrane polarization beyond certain threshold voltages leads to a steep conductance increase either indicating field-induced pore formation or being due to patch clamp artifacts (seal resistance breakdown). Protoplasts derived from tobacco culture cell lines (Bright Yellow-2, BY-2; Virginia bright Italian-0, VBI-0) were stained with the voltage-sensitive dye ANNINE-6. After establishing the whole cell patch clamp configuration 50-ms command voltage (Ucomm) steps ranging from -500 mV to +500 mV were applied while simultaneously exposing protoplasts to light at 475 nm wavelength. Pulse-induced currents and fluorescence intensity (known to be linearly related to the trans-membrane voltage, Um) were recorded. Plotting fluorescence intensity against Ucomm revealed saturation of the curve at values<-300 mV and >+300 mV and close correlation with theoretical Um values calculated on the basis of membrane pore formation. For BY-2 and VBI-0 protoplasts ANNINE-6 voltage sensitivity was calculated to be -0.0014 mV(-1) and -0.0012 mV(-1), respectively. Voltage ramp experiments revealed cation-selectivity of field-induced pores. Anions are conducted poorly independent of their size. In conclusion, the patch clamp technique is validated as a useful tool in electroporation research.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources