Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jul;32(1):17-24.
doi: 10.3892/ijmm.2013.1356. Epub 2013 Apr 22.

Activation of hepatic stellate cells is suppressed by microRNA-150

Affiliations

Activation of hepatic stellate cells is suppressed by microRNA-150

Jianjian Zheng et al. Int J Mol Med. 2013 Jul.

Abstract

microRNAs (miRNAs) have recently been reported to be involved in the progression of liver fibrosis. It has previously been shown that miR-150 can inhibit the activation of hepatic stellate cells (HSCs) via the inhibition of C-myb expression. However, the reduced C-myb expression is not responsible for all the effects of miR-150, there may be other molecular mechanisms for the suppression of HSCs by miR-150. In this study, gene array analysis was performed to analyze the miRNAs that were differentially expressed between LX-2 cells induced by transforming growth factor-β1 (TGF-β1) and the control. Our results indicated that the expression of miR-150 was significantly reduced during liver fibrosis. Of note, the reduction of miR-150 induced by TGF-β1 was in a dose- and time-dependent manner. In addition, miR-150 overexpression in LX-2 cells resulted in the inhibition of cell proliferation and the reduction of extracellular matrix proteins and α-smooth muscle actin (α-SMA). However, there was no significant change in the rate of apoptosis in cells transfected with miR-150 mimics compared with the control. Sp1, a mediator of α-1 (I) collagen (Col1A1) expression, and Col4A4 were found to be the targets for miR-150. Also, miR-150 mimics were found to decrease the expression of Sp1 and Col4A4. Smad2 and p-Smad2, the upstream mediators of Sp1, were not affected by miR-150. The same result was also seen in the levels of Smad3 and p-Smad3. Collectively, we conclude that miR-150 can reduce type Ⅰ and IV collagen by directly binding to Sp1 and Col4A4 without the involvement of upstream of the TGF-β/Smad pathway.

PubMed Disclaimer

Publication types