Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jun;258(6 Pt 1):G910-8.
doi: 10.1152/ajpgi.1990.258.6.G910.

Hypothermia, hepatic oxygen supply-demand, and ischemia-reperfusion injury in pigs

Affiliations

Hypothermia, hepatic oxygen supply-demand, and ischemia-reperfusion injury in pigs

K Nagano et al. Am J Physiol. 1990 Jun.

Abstract

We examined the effects of two degrees of hypothermia on hepatic oxygen delivery and uptake, hepatic lactate uptake as a marker of hepatic function, and the effect of hypothermia on ischemia-reperfusion injury in the liver in miniature pigs (n = 18, 21-30 kg body wt). Hepatic arterial and portal venous blood flows were measured while hepatic oxygen delivery was progressively decreased without venous congestion in the preportal area. With decreases in hepatic blood and oxygen supply, oxygen extraction gradually increased from 50 to 90% in the normothermic group and from 25 to 70 and 84% in the hypothermic (30. and 34 degrees C, respectively) groups. The values of critical hepatic oxygen delivery were between 7.3 and 11.9 ml O2.min-1.100 g-1 without significant differences among the groups. During reperfusion after ischemic insult, hepatic oxygen uptake returned to base-line values in both hypothermic groups but remained substantially below base-line values in normothermic groups of animals. Hepatic enzyme concentrations (lactate dehydrogenase, alanine aminotransferase, aspartate aminotransferase, and alcohol dehydrogenase) were substantially increased (up to 30-fold) in normothermic animals, but the concentrations did not increase in either of the hypothermic groups. These results demonstrated that hypothermia per se does not affect hepatic oxygen delivery but decreases hepatic oxygen demand and uptake, provides an effective protection from hepatic oxygen deprivation, and lessens reperfusion injury.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources