Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct;114(10):2293-305.
doi: 10.1002/jcb.24576.

Metabolic stability of 3-epi-1α,25-dihydroxyvitamin D3 over 1 α 25-dihydroxyvitamin D3: metabolism and molecular docking studies using rat CYP24A1

Affiliations

Metabolic stability of 3-epi-1α,25-dihydroxyvitamin D3 over 1 α 25-dihydroxyvitamin D3: metabolism and molecular docking studies using rat CYP24A1

Steve Y Rhieu et al. J Cell Biochem. 2013 Oct.

Abstract

3-epi-1α,25-dihydroxyvitamin D3 (3-epi-1α,25(OH)2D3), a natural metabolite of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), exhibits potent vitamin D receptor (VDR)-mediated actions such as inhibition of keratinocyte growth or suppression of parathyroid hormone secretion. These VDR-mediated actions of 3-epi-1α,25(OH)2D3 needed an explanation as 3-epi-1α,25(OH)2D3, unlike 1α,25(OH)2D3, exhibits low affinity towards VDR. Metabolic stability of 3-epi-1α,25(OH)2D3 over 1α,25(OH)2D3 has been hypothesized as a possible explanation. To provide further support for this hypothesis, we now performed comparative metabolism studies between 3-epi-1α,25(OH)2D3 and 1α,25(OH)2D3 using both the technique of isolated rat kidney perfusion and purified rat CYP24A1 in a cell-free reconstituted system. For the first time, these studies resulted in the isolation and identification of 3-epi-calcitroic acid as the final inactive metabolite of 3-epi-1α,25(OH)2D3 produced by rat CYP24A1. Furthermore, under identical experimental conditions, it was noted that the amount of 3-epi-calcitroic acid produced from 3-epi-1α,25(OH)2D3 is threefold less than that of calcitroic acid, the analogous final inactive metabolite produced from 1α,25(OH)2D3 . This key observation finally led us to conclude that the rate of overall side-chain oxidation of 3-epi-1α,25(OH)2D3 by rat CYP24A1 leading to its final inactivation is slower than that of 1α,25(OH)2D3. To elucidate the mechanism responsible for this important finding, we performed a molecular docking analysis using the crystal structure of rat CYP24A1. Docking results suggest that 3-epi-1α,25(OH)2D3, unlike 1α,25(OH)2D3, binds to CYP24A1 in an alternate configuration that destabilizes the formation of the enzyme-substrate complex sufficiently to slow the rate at which 3-epi-1α,25(OH)2D3 is inactivated by CYP24A1 through its metabolism into 3-epi-calcitroic acid.

Keywords: 3-EPI-1α,25-DIHYDROXYVITAMIN D3; 3-EPI-CALCITROIC ACID; 3-EPI-VITAMIN D3; C-3 EPIMERIZATION PATHWAY; CYP24A1; MOLECULAR DOCKING.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources