Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct;19(19-20):2156-65.
doi: 10.1089/ten.TEA.2012.0372. Epub 2013 May 25.

Transforming growth factor beta3 promotes tendon differentiation of equine embryo-derived stem cells

Affiliations

Transforming growth factor beta3 promotes tendon differentiation of equine embryo-derived stem cells

Tom Barsby et al. Tissue Eng Part A. 2013 Oct.

Abstract

Tendon injuries occur frequently in horses and have a poor capacity to regenerate, which leads to high re-injury rates. Equine embryo-derived stem cells (ESCs) survive in high numbers in the injured horse tendon and we hypothesized that they differentiate into tenocytes in vivo. Immunocytochemistry revealed that in the injured horse tendon ESCs express the tendon progenitor marker scleraxis and that there is a local upregulation of the transforming growth factor-β (TGF-β) at the injury site. The aim of this study was to determine if TGF-β signaling was able to drive tenocyte differentiation by ESCs. Exposure of differentiating ESCs to TGF-β in vitro produced an upregulation of scleraxis at the gene and protein level with the greatest effect being produced in the presence of TGF-β3. TGF-β3 treatment of differentiating ESCs also promotes a significant upregulation of other tendon-associated genes and proteins suggesting it can promote ESC differentiation into tenocytes. Our results demonstrate that equine ESCs can differentiate into a therapeutically relevant cell type and that TGF-β driven differentiation of ESCs may provide a model to study tendon development and better understand the transcriptional networks that are involved in equine tendon cell differentiation from the early embryonic stages.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources