Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun 15:254-255:149-156.
doi: 10.1016/j.jhazmat.2013.03.054. Epub 2013 Mar 27.

Possible role of laccase from Fusarium incarnatum UC-14 in bioremediation of Bisphenol A using reverse micelles system

Affiliations

Possible role of laccase from Fusarium incarnatum UC-14 in bioremediation of Bisphenol A using reverse micelles system

Urvish Chhaya et al. J Hazard Mater. .

Abstract

Bisphenol A [2,2 bis (4 hydroxyphenyl) propane] is widely used in the variety of industrial and residential applications such as the synthesis of polymers including polycarbonates, epoxy resins, phenol resins, polyesters and polyacrylates. BPA has been recognized as an Endocrine Disrupting Chemicals (EDC), thus it is necessary to assess its biodegradability or fate in the natural environment. In general, environmental pollutant such as BPA does not dissolve in aqueous media, owing to their high hydrophobicity, and hence non-aqueous catalysis can be employed to enhance biodegradability of phenolic environmental pollutant. Purified laccase hosted in reverse micelles using ternary system of isooctane: AOT [Bis (2-ethylhexyl) sulphosuccinate sodium salt)]:water having hydration ratio (Wo) of 30 with protein concentration of 43.5 μg/ml was found to eliminate 91.43% of 200 ppm of Bisphenol A at 50 °C, pH-6.0 when incubated with laccase/Reverse Micelles system for 75 min. GC-MS analysis of isooctane soluble fractions detected the presence of 4,4'-(2 hydroxy propane 1,2 diyl) diphenol, bis (4-hydroxylphenyl) butenal and 2-(1-(4-hydroxyphenyl) vinyl) pent-2-enal indicated degradation of BPA by two oxidation steps and one ring opening step (C-C bond cleavage). Laccase/RM system exhibited several advantages for the oxidative degradation of hydrophobic phenols mainly because of the solubility of either enzyme or substrate was improved in organic media and the stable activity of laccase in organic media was achieved.

PubMed Disclaimer

LinkOut - more resources