Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Aug;15(8):1304-12.
doi: 10.1111/cmi.12151. Epub 2013 May 13.

Identifying novel Plasmodium falciparum erythrocyte invasion receptors using systematic extracellular protein interaction screens

Affiliations
Free PMC article
Review

Identifying novel Plasmodium falciparum erythrocyte invasion receptors using systematic extracellular protein interaction screens

S Josefin Bartholdson et al. Cell Microbiol. 2013 Aug.
Free PMC article

Abstract

The invasion of host erythrocytes by the parasite Plasmodium falciparum initiates the blood stage of infection responsible for the symptoms of malaria. Invasion involves extracellular protein interactions between host erythrocyte receptors and ligands on the merozoite, the invasive form of the parasite. Despite significant research effort, many merozoite surface ligands have no known erythrocyte binding partner, most likely due to the intractable biochemical nature of membrane-tethered receptor proteins and their interactions. The few receptor-ligand pairs that have been described have largely relied on sourcing erythrocytes from patients with rare blood groups, a serendipitous approach that is unsatisfactory for systematically identifying novel receptors. We have recently developed a scalable assay called AVEXIS (for AVidity-based EXtracellular Interaction Screen), designed to circumvent the technical difficulties associated with the identification of extracellular protein interactions, and applied it to identify erythrocyte receptors for orphan P. falciparum merozoite ligands. Using this approach, we have recently identified Basigin (CD147) and Semaphorin-7A (CD108) as receptors for RH5 and MTRAP respectively. In this essay, we review techniques used to identify Plasmodium receptors and discuss how they could be applied in the future to identify novel receptors both for Plasmodium parasites but also other pathogens.

PubMed Disclaimer

Figures

Fig 1
Fig 1
Identifying novel Plasmodium receptors by AVEXIS.A. Schematic representation of erythrocyte invasion by the malarial parasite highlighting the extracellular protein interactions between parasite ligands and erythrocyte receptors.B. Cartoon of interacting cell surface receptors between an erythrocyte receptor (red) and a parasite ligand (blue).C. The AVEXIS assay detects direct interactions between soluble recombinant proteins representing the entire ectodomain of cell surface receptors. Here, the erythrocyte receptors are expressed as the pentamerized β-lactamase-tagged ‘preys’ and the parasite ligands as monomeric biotin-tagged ‘baits’. The baits are captured on a streptavidin-coated solid phase, such as a microtitre plate or glass slide and probed with the preys. A brief wash is performed and captured preys are detected by addition of a β-lactamase substrate, nitrocefin which hydrolyses a yellow substrate into a red product, indicating a positive interaction.D. AVEXIS involves the systematic screening within libraries of both baits and preys in an all-versus-all matrix of direct binding tests.E. An image of a typical screening plate. Each well contains a different bait protein screened with a single prey. A positive interaction was observed in well E2 and control interactions are indicated within the dotted line.
Fig 2
Fig 2
The cell surface receptor repertoire of the human erythrocyte. A schematic structural representation of the human erythrocyte cell surface receptor repertoire drawn approximately to scale together with the receptor abundances, where known, shown as bars on the scale. The figure contrasts large receptors such as CR1, which project 85 nm away from the membrane, but, at 1000 copies per cell, are relatively rare whereas the much smaller glycophorins are vastly more abundant, containing up to a million copies per cell in the case of GYPA.

Similar articles

Cited by

References

    1. Aikawa M, Miller LH, Johnson J, Rabbege J. Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J Cell Biol. 1978;77:72–82. - PMC - PubMed
    1. Anstee DJ. The nature and abundance of human red cell surface glycoproteins. J Immunogenet. 1990;17:219–225. - PubMed
    1. Bartholdson SJ, Bustamante LY, Crosnier C, Johnson S, Lea S, Rayner JC, Wright GJ. Semaphorin-7A is an erythrocyte receptor for P. falciparum merozoite-specific TRAP homolog, MTRAP. PLoS Pathog. 2012;8:e1003031. - PMC - PubMed
    1. Baum J, Chen L, Healer J, Lopaticki S, Boyle M, Triglia T, et al. Reticulocyte-binding protein homologue 5 – an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. Int J Parasitol. 2009;39:371–380. - PubMed
    1. Bei AK, Brugnara C, Duraisingh MT. In vitro genetic analysis of an erythrocyte determinant of malaria infection. J Infect Dis. 2010;202:1722–1727. - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources