Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun 15;85(12):1816-26.
doi: 10.1016/j.bcp.2013.04.010. Epub 2013 Apr 22.

Concurrent regulation of the transcription factors Nrf2 and ATF4 mediates the enhancement of glutathione levels by the flavonoid fisetin

Affiliations

Concurrent regulation of the transcription factors Nrf2 and ATF4 mediates the enhancement of glutathione levels by the flavonoid fisetin

Jennifer L Ehren et al. Biochem Pharmacol. .

Abstract

Glutathione (GSH) and GSH-associated metabolism provide the major line of defense for the protection of cells from various forms of toxic stress. GSH also plays a key role in regulating the intracellular redox environment. Thus, maintenance of GSH levels is developing into an important therapeutic objective for the treatment of a variety of diseases. Among the transcription factors that play critical roles in GSH metabolism are NF-E2-related factor 2 (Nrf2) and activating transcription factor 4 (ATF4). Thus, compounds that can upregulate these transcription factors may be particularly useful as treatment options through their effects on GSH metabolism. We previously showed that the flavonoid fisetin not only increases basal levels of GSH but also maintains GSH levels under oxidative stress conditions. However, the mechanisms underlying these effects have remained unknown until now. Here we show that fisetin rapidly increases the levels of both Nrf2 and ATF4 as well as Nrf2- and ATF4-dependent gene transcription via distinct mechanisms. Although fisetin greatly increases the stability of both Nrf2 and ATF4, only the effect on ATF4 is dependent on protein kinase activity. Using siRNA we found that ATF4, but not Nrf2, is important for fisetin's ability to increase GSH levels under basal conditions whereas both ATF4 and Nrf2 appear to cooperate to increase GSH levels under oxidative stress conditions. Based upon these results, we hypothesize that compounds able to increase GSH levels via multiple mechanisms, such as fisetin, will be particularly effective for maintaining GSH levels under a variety of different stresses.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources