PHAISTOS: a framework for Markov chain Monte Carlo simulation and inference of protein structure
- PMID: 23619610
- DOI: 10.1002/jcc.23292
PHAISTOS: a framework for Markov chain Monte Carlo simulation and inference of protein structure
Abstract
We present a new software framework for Markov chain Monte Carlo sampling for simulation, prediction, and inference of protein structure. The software package contains implementations of recent advances in Monte Carlo methodology, such as efficient local updates and sampling from probabilistic models of local protein structure. These models form a probabilistic alternative to the widely used fragment and rotamer libraries. Combined with an easily extendible software architecture, this makes PHAISTOS well suited for Bayesian inference of protein structure from sequence and/or experimental data. Currently, two force-fields are available within the framework: PROFASI and OPLS-AA/L, the latter including the generalized Born surface area solvent model. A flexible command-line and configuration-file interface allows users quickly to set up simulations with the desired configuration. PHAISTOS is released under the GNU General Public License v3.0. Source code and documentation are freely available from http://phaistos.sourceforge.net. The software is implemented in C++ and has been tested on Linux and OSX platforms.
Copyright © 2013 Wiley Periodicals, Inc.
Similar articles
-
AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics.Bioinformatics. 2008 Feb 15;24(4):581-3. doi: 10.1093/bioinformatics/btm388. Epub 2007 Aug 30. Bioinformatics. 2008. PMID: 17766271
-
GNU MCSim: Bayesian statistical inference for SBML-coded systems biology models.Bioinformatics. 2009 Jun 1;25(11):1453-4. doi: 10.1093/bioinformatics/btp162. Epub 2009 Mar 20. Bioinformatics. 2009. PMID: 19304877
-
Mocapy++--a toolkit for inference and learning in dynamic Bayesian networks.BMC Bioinformatics. 2010 Mar 12;11:126. doi: 10.1186/1471-2105-11-126. BMC Bioinformatics. 2010. PMID: 20226024 Free PMC article.
-
Bayesian models and Markov chain Monte Carlo methods for protein motifs with the secondary characteristics.J Comput Biol. 2005 Sep;12(7):952-70. doi: 10.1089/cmb.2005.12.952. J Comput Biol. 2005. PMID: 16201915 Review.
-
Statistical inference for stochastic simulation models--theory and application.Ecol Lett. 2011 Aug;14(8):816-27. doi: 10.1111/j.1461-0248.2011.01640.x. Epub 2011 Jun 17. Ecol Lett. 2011. PMID: 21679289 Review.
Cited by
-
Inference of structure ensembles of flexible biomolecules from sparse, averaged data.PLoS One. 2013 Nov 7;8(11):e79439. doi: 10.1371/journal.pone.0079439. eCollection 2013. PLoS One. 2013. PMID: 24244505 Free PMC article.
-
ProCS15: a DFT-based chemical shift predictor for backbone and Cβ atoms in proteins.PeerJ. 2015 Oct 20;3:e1344. doi: 10.7717/peerj.1344. eCollection 2015. PeerJ. 2015. PMID: 26623185 Free PMC article.
-
Native State of Complement Protein C3d Analysed via Hydrogen Exchange and Conformational Sampling.Int J Comput Biol Drug Des. 2018;11(1-2):90-113. doi: 10.1504/IJCBDD.2018.090834. Epub 2018 Mar 24. Int J Comput Biol Drug Des. 2018. PMID: 30700993 Free PMC article.
-
Structural Phylogenetics with Confidence.Mol Biol Evol. 2020 Sep 1;37(9):2711-2726. doi: 10.1093/molbev/msaa100. Mol Biol Evol. 2020. PMID: 32302382 Free PMC article.
-
Bayesian inference of protein structure from chemical shift data.PeerJ. 2015 Mar 24;3:e861. doi: 10.7717/peerj.861. eCollection 2015. PeerJ. 2015. PMID: 25825683 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases