Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr;9(4):649-58.
doi: 10.1166/jbn.2013.1570.

Nano-composite of poly(L-lactide) and halloysite nanotubes surface-grafted with L-lactide oligomer under microwave irradiation

Affiliations

Nano-composite of poly(L-lactide) and halloysite nanotubes surface-grafted with L-lactide oligomer under microwave irradiation

Bing-Hong Luo et al. J Biomed Nanotechnol. 2013 Apr.

Abstract

In order to improve the bonding between halloysite nanotubes (HNTs) and poly(L-lactide) (PLLA), and hence to increase the mechanical properties of HNTs/PLLA nano-composite, HNTs were surface-grafted with PLLA under microwave irradiation and then blended with PLLA matrix. The optimal conditions for grafting polymerization are: irradiation time of 30 min, microwave power of 30 W and reaction temperature of 130 degrees C. The structure and properties of the surface-grafted HNTs (g-HNTs) were characterized by Fourier transformation infrared (FTIR), thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and dynamic light scattering (DLS). Nano-composites of g-HNTs/PLLA and non-grafted HNTs/PLLA were subsequently evaluated in terms of crystallinity, dispersion, interfacial interaction, mechanical performance and cytocompatibility by polarized optical microscopy (POM), field scanning electron microscope (FESM), tensile testing and cell culture experiment. Results show that the grafted PLLA chains on the surfaces of HNTs, as inter-tying molecules, played an important role in improving the adhesive strength between the nanotubes and the polymer matrix. The enhanced interaction among g-HNTs and PLLA matrix resulted in a better tensile strength and modulus compared to the pristine PLLA and HNTs/PLLA. Cell culture results indicated that g-HNTs promoted both adhesion and proliferation of M3T3 fibroblasts on the g-HNTs/PLLA composite film.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources