Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun;68(6):713-23.
doi: 10.1111/all.12139. Epub 2013 Apr 27.

Oncostatin M is a FIP1L1/PDGFRA-dependent mediator of cytokine production in chronic eosinophilic leukemia

Affiliations

Oncostatin M is a FIP1L1/PDGFRA-dependent mediator of cytokine production in chronic eosinophilic leukemia

G Hoermann et al. Allergy. 2013 Jun.

Abstract

Background: Chronic eosinophilic leukemia (CEL) is a myeloproliferative neoplasm characterized by expansion of neoplastic eosinophils, tissue infiltration, and organ damage. In a subset of these patients, the FIP1L1/PDGFRA (F/P) oncoprotein is detectable. F/P exhibits constitutive tyrosine kinase activity and activates a number of signaling pathways. So far, however, little is known about the role of F/P-dependent proteins in the pathogenesis of CEL.

Methods: A screen for F/P-dependent cytokines was performed in growth factor-dependent human cell lines lentivirally transduced with F/P. Signal transduction pathways were characterized in Ba/F3 cells with doxycycline-inducible expression of F/P and in EOL-1 cells. Cytokine expression was confirmed in patients' material by immunohistochemistry, immunofluorescence, and confocal microscopy. Gene expression analysis, proliferation assays, and chemotaxis assays were used to elucidate paracrine interactions between neoplastic eosinophils and stromal cells.

Results: We show that F/P upregulates expression of oncostatin M (OSM) in various cell line models in a STAT5-dependent manner. Correspondingly, neoplastic eosinophils in the bone marrow were found to overexpress OSM. OSM derived from F/P + cells stimulated proliferation of stromal cells. Moreover, OSM-containing supernatants from F/P + cells were found to upregulate production of stromal cell-derived factor-1 (SDF-1)/CXCL12 in human fibroblasts. SDF-1, in turn, induced migration of EOL-1 cells in a dose-dependent manner.

Conclusions: We have identified a F/P-driven paracrine interaction between neoplastic eosinophils and stromal cells that may contribute to tissue fibrosis and accumulation of neoplastic eosinophils in CEL.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources