Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Nov;31(11):547-53.
doi: 10.1089/pho.2012.3461. Epub 2013 Apr 27.

Wavelength and bacterial density influence the bactericidal effect of blue light on methicillin-resistant Staphylococcus aureus (MRSA)

Affiliations

Wavelength and bacterial density influence the bactericidal effect of blue light on methicillin-resistant Staphylococcus aureus (MRSA)

Violet V Bumah et al. Photomed Laser Surg. 2013 Nov.

Abstract

Objective: The purpose of this study was to investigate the effect of wavelength and methicillin-resistant Staphylococcus aureus (MRSA) density on the bactericidal effect of 405 and 470 nm light.

Background data: It is recognized that 405 and 470 nm light-emitting diode (LED) light kill MRSA in standard 5 × 10(6) colony-forming units (CFU)/mL cultures; however, the effect of bacterial density on the bactericidal effect of each wavelength is not known.

Methods: In three experiments, we cultured and plated US300 MRSA at four densities. Then, we irradiated each plate once with either wavelength at 0, 1, 3, 45, 50, 55, 60, and 220 J/cm(2).

Results: Irradiation with either wavelength reduced bacterial colonies at each density (p<0.05). More bacteria were cleared as density increased; however, the proportion of colonies cleared, inversely decreased as density increased--the maximum being 100%, 96%, and 78% for 3 × 10(6), 5 × 10(6), and 7 × 10(6) CFU/mL cultures, respectively. Both wavelengths had similar effects on the sparser 3 × 10(6) and 5 × 10(6) CFU/mL cultures, but in the denser 7 × 10(6) CFU/mL culture, 405 nm light cleared more bacteria at each fluence (p<0.001). To determine the effect of beam penetration, denser 8 × 10(6) and 12 × 10(6) CFU/mL culture plates were irradiated either from the top, the bottom, or both directions. More colonies were eradicated from plates irradiated from top and bottom, than from plates irradiated from top or bottom at the same sum total fluences (p<0.001).

Conclusions: The bactericidal effect of LED blue light is limited more by light penetration of bacterial layers than by bacterial density per se.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources